001     132856
005     20240229105035.0
024 7 _ |a 10.1186/s13550-018-0383-7
|2 doi
024 7 _ |a pmid:29633046
|2 pmid
024 7 _ |a pmc:PMC5891438
|2 pmc
037 _ _ |a DKFZ-2018-00499
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Sachpekidis, C.
|0 0000-0001-8739-8741
|b 0
|e First author
245 _ _ |a Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660127777_9237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite the significant upgrading in recent years of the role of 18F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3-Deoxy-3-[18F]fluorothymidine (18F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18F-FDG PET/CT.Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18F-FDG PET/CT and 18F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18F-FDG PET/CT demonstrated focal, 18F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18F-FLT PET/CT showed focal, 18F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18F-FDG avid, focal, MM-indicative lesions were detected with 18F-FDG PET/CT, while 17 18F-FLT avid, focal, MM-indicative lesions were detected with 18F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18F-FDG PET/CT than for 18F-FLT PET/CT. A common finding was a mismatch of focally increased 18F-FDG uptake and reduced 18F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUVmean and SUVmax were significantly higher for 18F-FLT than for 18F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers.Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Goldschmidt, H.
|0 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
|b 1
|u dkfz
700 1 _ |a Kopka, K.
|0 P:(DE-He78)9793347ba83f527b81a22ab75af9378a
|b 2
700 1 _ |a Kopp-Schneider, A.
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 3
700 1 _ |a Dimitrakopoulou-Strauss, Antonia
|0 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
|b 4
|e Last author
773 _ _ |a 10.1186/s13550-018-0383-7
|g Vol. 8, no. 1, p. 28
|0 PERI:(DE-600)2619892-7
|n 1
|p 28
|t EJNMMI Research
|v 8
|y 2018
|x 2191-219X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:132856
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0001-8739-8741
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a1aa959d47e3e026abe157a8adf24b96
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9793347ba83f527b81a22ab75af9378a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EJNMMI RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l E060 KKE Nuklearmedizin
|x 0
920 1 _ |0 I:(DE-He78)E030-20160331
|k E030
|l Radiopharmazeutische Chemie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a I:(DE-He78)E030-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21