000132877 001__ 132877
000132877 005__ 20240229105037.0
000132877 0247_ $$2doi$$a10.18632/aging.101392
000132877 0247_ $$2pmid$$apmid:29514134
000132877 0247_ $$2pmc$$apmc:PMC5892685
000132877 0247_ $$2altmetric$$aaltmetric:34302239
000132877 037__ $$aDKFZ-2018-00519
000132877 041__ $$aeng
000132877 082__ $$a610
000132877 1001_ $$0P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aZhang, Yan$$b0$$eFirst author$$udkfz
000132877 245__ $$aMethylomic survival predictors, frailty, and mortality.
000132877 260__ $$a[S.l.]$$bImpact Journals, LLC$$c2018
000132877 3367_ $$2DRIVER$$aarticle
000132877 3367_ $$2DataCite$$aOutput Types/Journal article
000132877 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1660216732_22214
000132877 3367_ $$2BibTeX$$aARTICLE
000132877 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000132877 3367_ $$00$$2EndNote$$aJournal Article
000132877 520__ $$aSurvival predictors are of potential use for informing on biological age and targeting prevention of aging-related morbidity. We assessed associations of 2 novel methylomic survival indicators, a methylation-based mortality risk score (MRscore) and the epigenetic clock-derived age acceleration (AA), with a well-known survival predictor, frailty index (FI), and compared the 3 indicators in mortality prediction. In a large population-based cohort with 14-year follow-up, we found both MRscore and AA to be independently associated with FI, but the association was much stronger for MRscore than for AA. Although all 3 indicators were individually associated with all-cause mortality, robust associations only persisted for MRscore and FI when simultaneously including the 3 indicators in regression models, with hazard ratios (95% CI) of 1.91 (1.63-2.22), 1.37 (1.25-1.51), and 1.05 (0.90-1.22), respectively, per standard deviation increase of MRscore, FI, and AA. Prediction error curves, Harrell's C-statistics, and time-dependent AUCs all showed higher predictive accuracy for MRscore than for FI and AA. These findings were validated in independent samples. Our study demonstrates the ability of the MRscore to strongly enhance survival prediction beyond established markers of biological age, such as FI and AA, and it thus bears potential of a surrogate endpoint for clinical research and intervention.
000132877 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000132877 588__ $$aDataset connected to CrossRef, PubMed,
000132877 7001_ $$0P:(DE-He78)97343bbd9545a4b87574e74329dabfd1$$aSaum, Kai-Uwe$$b1$$udkfz
000132877 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b2$$udkfz
000132877 7001_ $$aHolleczek, Bernd$$b3
000132877 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$eLast author$$udkfz
000132877 773__ $$0PERI:(DE-600)2535337-8$$a10.18632/aging.101392$$gVol. 10, no. 3$$n3$$p339-357$$tAging$$v10$$x1945-4589$$y2018
000132877 909CO $$ooai:inrepo02.dkfz.de:132877$$pVDB
000132877 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000132877 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97343bbd9545a4b87574e74329dabfd1$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000132877 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000132877 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000132877 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000132877 9141_ $$y2018
000132877 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAGING-US : 2015
000132877 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000132877 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000132877 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000132877 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000132877 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000132877 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000132877 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000132877 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000132877 9201_ $$0I:(DE-He78)G110-20160331$$kG110$$lPräventive Onkologie$$x1
000132877 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000132877 980__ $$ajournal
000132877 980__ $$aVDB
000132877 980__ $$aI:(DE-He78)C070-20160331
000132877 980__ $$aI:(DE-He78)G110-20160331
000132877 980__ $$aI:(DE-He78)L101-20160331
000132877 980__ $$aUNRESTRICTED