000132879 001__ 132879 000132879 005__ 20240229105037.0 000132879 0247_ $$2doi$$a10.1007/s00401-018-1830-2 000132879 0247_ $$2pmid$$apmid:29541918 000132879 0247_ $$2pmc$$apmc:PMC5904225 000132879 0247_ $$2ISSN$$a0001-6322 000132879 0247_ $$2ISSN$$a1432-0533 000132879 0247_ $$2altmetric$$aaltmetric:34375975 000132879 037__ $$aDKFZ-2018-00521 000132879 041__ $$aeng 000132879 082__ $$a610 000132879 1001_ $$aApps, John R$$b0 000132879 245__ $$aTumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. 000132879 260__ $$aBerlin$$bSpringer$$c2018 000132879 3367_ $$2DRIVER$$aarticle 000132879 3367_ $$2DataCite$$aOutput Types/Journal article 000132879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1526383406_1674 000132879 3367_ $$2BibTeX$$aARTICLE 000132879 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000132879 3367_ $$00$$2EndNote$$aJournal Article 000132879 520__ $$aAdamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP. 000132879 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0 000132879 588__ $$aDataset connected to CrossRef, PubMed, 000132879 7001_ $$aCarreno, Gabriela$$b1 000132879 7001_ $$aGonzalez-Meljem, Jose Mario$$b2 000132879 7001_ $$aHaston, Scott$$b3 000132879 7001_ $$aGuiho, Romain$$b4 000132879 7001_ $$aCooper, Julie E$$b5 000132879 7001_ $$aManshaei, Saba$$b6 000132879 7001_ $$aJani, Nital$$b7 000132879 7001_ $$aHölsken, Annett$$b8 000132879 7001_ $$aPettorini, Benedetta$$b9 000132879 7001_ $$aBeynon, Robert J$$b10 000132879 7001_ $$aSimpson, Deborah M$$b11 000132879 7001_ $$aFraser, Helen C$$b12 000132879 7001_ $$aHong, Ying$$b13 000132879 7001_ $$aHallang, Shirleen$$b14 000132879 7001_ $$aStone, Thomas J$$b15 000132879 7001_ $$aVirasami, Alex$$b16 000132879 7001_ $$aDonson, Andrew M$$b17 000132879 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David$$b18$$udkfz 000132879 7001_ $$aAquilina, Kristian$$b19 000132879 7001_ $$aSpoudeas, Helen$$b20 000132879 7001_ $$aJoshi, Abhijit R$$b21 000132879 7001_ $$aGrundy, Richard$$b22 000132879 7001_ $$aStorer, Lisa C D$$b23 000132879 7001_ $$aKorbonits, Márta$$b24 000132879 7001_ $$aHilton, David A$$b25 000132879 7001_ $$aTossell, Kyoko$$b26 000132879 7001_ $$aThavaraj, Selvam$$b27 000132879 7001_ $$aUngless, Mark A$$b28 000132879 7001_ $$aGil, Jesus$$b29 000132879 7001_ $$aBuslei, Rolf$$b30 000132879 7001_ $$aHankinson, Todd$$b31 000132879 7001_ $$aHargrave, Darren$$b32 000132879 7001_ $$aGoding, Colin$$b33 000132879 7001_ $$aAndoniadou, Cynthia L$$b34 000132879 7001_ $$aBrogan, Paul$$b35 000132879 7001_ $$aJacques, Thomas S$$b36 000132879 7001_ $$aWilliams, Hywel J$$b37 000132879 7001_ $$00000-0002-5292-7276$$aMartinez-Barbera, Juan Pedro$$b38 000132879 773__ $$0PERI:(DE-600)1458410-4$$a10.1007/s00401-018-1830-2$$gVol. 135, no. 5, p. 757 - 777$$n5$$p757 - 777$$tActa neuropathologica$$v135$$x1432-0533$$y2018 000132879 909CO $$ooai:inrepo02.dkfz.de:132879$$pVDB 000132879 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b18$$kDKFZ 000132879 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0 000132879 9141_ $$y2018 000132879 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000132879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA NEUROPATHOL : 2015 000132879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000132879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000132879 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000132879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000132879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000132879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000132879 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000132879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000132879 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000132879 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000132879 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000132879 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACTA NEUROPATHOL : 2015 000132879 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lPädiatrische Neuroonkologie$$x0 000132879 980__ $$ajournal 000132879 980__ $$aVDB 000132879 980__ $$aI:(DE-He78)B062-20160331 000132879 980__ $$aUNRESTRICTED