001     132940
005     20240229111723.0
024 7 _ |a 10.1007/s00125-018-4586-2
|2 doi
024 7 _ |a pmid:29549418
|2 pmid
024 7 _ |a 0012-186X
|2 ISSN
024 7 _ |a 1432-0428
|2 ISSN
024 7 _ |a altmetric:34693739
|2 altmetric
037 _ _ |a DKFZ-2018-00579
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Li, Sherly X
|b 0
245 _ _ |a Interplay between genetic predisposition, macronutrient intake and type 2 diabetes incidence: analysis within EPIC-InterAct across eight European countries.
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550485280_708
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gene-macronutrient interactions may contribute to the development of type 2 diabetes but research evidence to date is inconclusive. We aimed to increase our understanding of the aetiology of type 2 diabetes by investigating potential interactions between genes and macronutrient intake and their association with the incidence of type 2 diabetes.We investigated the influence of interactions between genetic risk scores (GRSs) for type 2 diabetes, insulin resistance and BMI and macronutrient intake on the development of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct, a prospective case-cohort study across eight European countries (N = 21,900 with 9742 incident type 2 diabetes cases). Macronutrient intake was estimated from diets reported in questionnaires, including proportion of energy derived from total carbohydrate, protein, fat, plant and animal protein, saturated, monounsaturated and polyunsaturated fat and dietary fibre. Using multivariable-adjusted Cox regression, we estimated country-specific interaction results on the multiplicative scale, using random-effects meta-analysis. Secondary analysis used isocaloric macronutrient substitution.No interactions were identified between any of the three GRSs and any macronutrient intake, with low-to-moderate heterogeneity between countries (I2 range 0-51.6%). Results were similar using isocaloric macronutrient substitution analyses and when weighted and unweighted GRSs and individual SNPs were examined.Genetic susceptibility to type 2 diabetes, insulin resistance and BMI did not modify the association between macronutrient intake and incident type 2 diabetes. This suggests that macronutrient intake recommendations to prevent type 2 diabetes do not need to account for differences in genetic predisposition to these three metabolic conditions.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Imamura, Fumiaki
|b 1
700 1 _ |a Schulze, Matthias B
|b 2
700 1 _ |a Zheng, Jusheng
|b 3
700 1 _ |a Ye, Zheng
|b 4
700 1 _ |a Agudo, Antonio
|b 5
700 1 _ |a Ardanaz, Eva
|b 6
700 1 _ |a Aune, Dagfinn
|b 7
700 1 _ |a Boeing, Heiner
|b 8
700 1 _ |a Dorronsoro, Miren
|b 9
700 1 _ |a Dow, Courtney
|b 10
700 1 _ |a Fagherazzi, Guy
|b 11
700 1 _ |a Grioni, Sara
|b 12
700 1 _ |a Gunter, Marc J
|b 13
700 1 _ |a Huerta, José María
|b 14
700 1 _ |a Ibsen, Daniel B
|b 15
700 1 _ |a Jakobsen, Marianne Uhre
|b 16
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 17
|u dkfz
700 1 _ |a Key, Timothy J
|b 18
700 1 _ |a Khaw, Kay-Tee
|b 19
700 1 _ |a Kyrø, Cecilie
|b 20
700 1 _ |a Mancini, Francesca Romana
|b 21
700 1 _ |a Molina-Portillo, Elena
|b 22
700 1 _ |a Murphy, Neil
|b 23
700 1 _ |a Nilsson, Peter M
|b 24
700 1 _ |a Onland-Moret, N Charlotte
|b 25
700 1 _ |a Palli, Domenico
|b 26
700 1 _ |a Panico, Salvatore
|b 27
700 1 _ |a Poveda, Alaitz
|b 28
700 1 _ |a Quirós, J Ramón
|b 29
700 1 _ |a Ricceri, Fulvio
|b 30
700 1 _ |a Sluijs, Ivonne
|b 31
700 1 _ |a Spijkerman, Annemieke M W
|b 32
700 1 _ |a Tjonneland, Anne
|b 33
700 1 _ |a Tumino, Rosario
|b 34
700 1 _ |a Winkvist, Anna
|b 35
700 1 _ |a Langenberg, Claudia
|b 36
700 1 _ |a Sharp, Stephen J
|b 37
700 1 _ |a Riboli, Elio
|b 38
700 1 _ |a Scott, Robert A
|b 39
700 1 _ |a Forouhi, Nita G
|b 40
700 1 _ |a Wareham, Nicholas J
|b 41
773 _ _ |a 10.1007/s00125-018-4586-2
|g Vol. 61, no. 6, p. 1325 - 1332
|0 PERI:(DE-600)1458993-x
|n 6
|p 1325 - 1332
|t Diabetologia
|v 61
|y 2018
|x 1432-0428
909 C O |p VDB
|o oai:inrepo02.dkfz.de:132940
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIABETOLOGIA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b DIABETOLOGIA : 2015
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21