001     132942
005     20240229105040.0
024 7 _ |a 10.1158/2326-6066.CIR-17-0550
|2 doi
024 7 _ |a pmid:29514797
|2 pmid
024 7 _ |a 2326-6066
|2 ISSN
024 7 _ |a 2326-6074
|2 ISSN
024 7 _ |a altmetric:34134024
|2 altmetric
037 _ _ |a DKFZ-2018-00581
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Pahl, Jens
|0 P:(DE-He78)0f643e43f006f9ce6666909ec4f79a2f
|b 0
|e First author
|u dkfz
245 _ _ |a CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells.
260 _ _ |a Philadelphia, Pa.
|c 2018
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527241143_21565
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CD16A is a potent cytotoxicity receptor on human natural killer (NK) cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30+ lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2- and IL15-driven NK cell proliferation and expansion. This effect involved the upregulation of CD25 (IL2Rα) and CD132 (γc) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed 1 day after CD16A engagement could be recovered by reculture in IL2 or IL15. After reculture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNγ production upon restimulation with tumor cells or cytokines. Importantly, after reculture, CD16A-experienced NK cells also exerted increased cytotoxicity toward different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to restimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell antitumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Cancer Immunol Res; 6(5); 517-27. ©2018 AACR.
536 _ _ |a 314 - Tumor immunology (POF3-314)
|0 G:(DE-HGF)POF3-314
|c POF3-314
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Koch, Joachim
|b 1
700 1 _ |a Götz, Jana
|0 P:(DE-He78)63c7f59c86b4d0aea6cb35656305e1a4
|b 2
|u dkfz
700 1 _ |a Arnold, Annette
|0 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
|b 3
|u dkfz
700 1 _ |a Reusch, Uwe
|b 4
700 1 _ |a Gantke, Thorsten
|b 5
700 1 _ |a Rajkovic, Erich
|b 6
700 1 _ |a Treder, Martin
|b 7
700 1 _ |a Cerwenka, Adelheid
|0 P:(DE-He78)d2b4dd8bdffe4aaa0f5e30e91587766f
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1158/2326-6066.CIR-17-0550
|g Vol. 6, no. 5, p. 517 - 527
|0 PERI:(DE-600)2732517-9
|n 5
|p 517 - 527
|t Cancer immunology research
|v 6
|y 2018
|x 2326-6074
909 C O |o oai:inrepo02.dkfz.de:132942
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)0f643e43f006f9ce6666909ec4f79a2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)63c7f59c86b4d0aea6cb35656305e1a4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7c776439971ef21f36ac730cfbff7fff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)d2b4dd8bdffe4aaa0f5e30e91587766f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|2 G:(DE-HGF)POF3-300
|v Tumor immunology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER IMMUNOL RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER IMMUNOL RES : 2015
920 1 _ |0 I:(DE-He78)D080-20160331
|k D080
|l Nachwuchsgruppe Angeborene Immunität
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D080-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21