001     132947
005     20240229105041.0
024 7 _ |a 10.1016/j.ajhg.2018.03.019
|2 doi
024 7 _ |a pmid:29727690
|2 pmid
024 7 _ |a 0002-9297
|2 ISSN
024 7 _ |a 1537-6605
|2 ISSN
024 7 _ |a altmetric:40744467
|2 altmetric
037 _ _ |a DKFZ-2018-00586
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Su, Yu-Ru
|b 0
245 _ _ |a A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics.
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527240926_13187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Genome-wide association studies (GWASs) have successfully identified thousands of genetic variants for many complex diseases; however, these variants explain only a small fraction of the heritability. Recently, genetic association studies that leverage external transcriptome data have received much attention and shown promise for discovering novel variants. One such approach, PrediXcan, is to use predicted gene expression through genetic regulation. However, there are limitations in this approach. The predicted gene expression may be biased, resulting from regularized regression applied to moderately sample-sized reference studies. Further, some variants can individually influence disease risk through alternative functional mechanisms besides expression. Thus, testing only the association of predicted gene expression as proposed in PrediXcan will potentially lose power. To tackle these challenges, we consider a unified mixed effects model that formulates the association of intermediate phenotypes such as imputed gene expression through fixed effects, while allowing residual effects of individual variants to be random. We consider a set-based score testing framework, MiST (mixed effects score test), and propose two data-driven combination approaches to jointly test for the fixed and random effects. We establish the asymptotic distributions, which enable rapid calculation of p values for genome-wide analyses, and provide p values for fixed and random effects separately to enhance interpretability over GWASs. Extensive simulations demonstrate that our approaches are more powerful than existing ones. We apply our approach to a large-scale GWAS of colorectal cancer and identify two genes, POU5F1B and ATF1, which would have otherwise been missed by PrediXcan, after adjusting for all known loci.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Di, Chongzhi
|b 1
700 1 _ |a Bien, Stephanie
|b 2
700 1 _ |a Huang, Licai
|b 3
700 1 _ |a Dong, Xinyuan
|b 4
700 1 _ |a Abecasis, Goncalo
|b 5
700 1 _ |a Berndt, Sonja
|b 6
700 1 _ |a Bezieau, Stephane
|b 7
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 8
|u dkfz
700 1 _ |a Caan, Bette
|b 9
700 1 _ |a Casey, Graham
|b 10
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 11
|u dkfz
700 1 _ |a Chanock, Stephen
|b 12
700 1 _ |a Chen, Sai
|b 13
700 1 _ |a Connolly, Charles
|b 14
700 1 _ |a Curtis, Keith
|b 15
700 1 _ |a Figueiredo, Jane
|b 16
700 1 _ |a Gala, Manish
|b 17
700 1 _ |a Gallinger, Steven
|b 18
700 1 _ |a Harrison, Tabitha
|b 19
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 20
|u dkfz
700 1 _ |a Hopper, John
|b 21
700 1 _ |a Huyghe, Jeroen R
|b 22
700 1 _ |a Jenkins, Mark
|b 23
700 1 _ |a Joshi, Amit
|b 24
700 1 _ |a Le Marchand, Loic
|b 25
700 1 _ |a Newcomb, Polly
|b 26
700 1 _ |a Nickerson, Deborah
|b 27
700 1 _ |a Potter, John
|b 28
700 1 _ |a Schoen, Robert
|b 29
700 1 _ |a Slattery, Martha
|b 30
700 1 _ |a White, Emily
|b 31
700 1 _ |a Zanke, Brent
|b 32
700 1 _ |a Peters, Ulrike
|b 33
700 1 _ |a Hsu, Li
|b 34
773 _ _ |a 10.1016/j.ajhg.2018.03.019
|g Vol. 102, no. 5, p. 904 - 919
|0 PERI:(DE-600)1473813-2
|n 5
|p 904 - 919
|t The American journal of human genetics
|v 102
|y 2018
|x 0002-9297
909 C O |o oai:inrepo02.dkfz.de:132947
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J HUM GENET : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AM J HUM GENET : 2015
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21