000134800 001__ 134800
000134800 005__ 20240229105041.0
000134800 0247_ $$2doi$$a10.1002/ijc.31300
000134800 0247_ $$2pmid$$apmid:29424427
000134800 0247_ $$2ISSN$$a0020-7136
000134800 0247_ $$2ISSN$$a1097-0215
000134800 0247_ $$2altmetric$$aaltmetric:33084241
000134800 037__ $$aDKFZ-2018-00593
000134800 041__ $$aeng
000134800 082__ $$a610
000134800 1001_ $$00000-0001-9890-0450$$aAhadova, Aysel$$b0$$eFirst author
000134800 245__ $$aThree molecular pathways model colorectal carcinogenesis in Lynch syndrome.
000134800 260__ $$aBognor Regis$$bWiley-Liss$$c2018
000134800 3367_ $$2DRIVER$$aarticle
000134800 3367_ $$2DataCite$$aOutput Types/Journal article
000134800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528117207_28969
000134800 3367_ $$2BibTeX$$aARTICLE
000134800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134800 3367_ $$00$$2EndNote$$aJournal Article
000134800 520__ $$aLynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes. MMR deficiency has long been regarded as a secondary event in the pathogenesis of Lynch syndrome colorectal cancers. Recently, this concept has been challenged by the discovery of MMR-deficient crypt foci in the normal mucosa. We aimed to reconstruct colorectal carcinogenesis in Lynch syndrome by collecting molecular and histology evidence from Lynch syndrome adenomas and carcinomas. We determined the frequency of MMR deficiency in adenomas from Lynch syndrome mutation carriers by immunohistochemistry and by systematic literature analysis. To trace back the pathways of pathogenesis, histological growth patterns and mutational signatures were analyzed in Lynch syndrome colorectal cancers. Literature and immunohistochemistry analysis demonstrated MMR deficiency in 491 (76.7%) out of 640 adenomas (95% CI: 73.3% to 79.8%) from Lynch syndrome mutation carriers. Histologically normal MMR-deficient crypts were found directly adjacent to dysplastic adenoma tissue, proving their role as tumor precursors in Lynch syndrome. Accordingly, mutation signature analysis in Lynch colorectal cancers revealed that KRAS and APC mutations commonly occur after the onset of MMR deficiency. Tumors lacking evidence of polypous growth frequently presented with CTNNB1 and TP53 mutations. Our findings demonstrate that Lynch syndrome colorectal cancers can develop through three pathways, with MMR deficiency commonly representing an early and possibly initiating event. This underlines that targeting MMR-deficient cells by chemoprevention or vaccines against MMR deficiency-induced frameshift peptide neoantigens holds promise for tumor prevention in Lynch syndrome.
000134800 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000134800 588__ $$aDataset connected to CrossRef, PubMed,
000134800 7001_ $$aGallon, Richard$$b1
000134800 7001_ $$0P:(DE-He78)c826cd3421c6d05725b35568f80b4c67$$aGebert, Johannes$$b2$$udkfz
000134800 7001_ $$0P:(DE-HGF)0$$aBallhausen, Alexej$$b3
000134800 7001_ $$aEndris, Volker$$b4
000134800 7001_ $$aKirchner, Martina$$b5
000134800 7001_ $$aStenzinger, Albrecht$$b6
000134800 7001_ $$aBurn, John$$b7
000134800 7001_ $$00000-0002-0498-6781$$avon Knebel Doeberitz, Magnus$$b8
000134800 7001_ $$aBläker, Hendrik$$b9
000134800 7001_ $$0P:(DE-HGF)0$$aKloor, Matthias$$b10$$eLast author
000134800 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.31300$$gVol. 143, no. 1, p. 139 - 150$$n1$$p139 - 150$$tInternational journal of cancer$$v143$$x0020-7136$$y2018
000134800 909CO $$ooai:inrepo02.dkfz.de:134800$$pVDB
000134800 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-9890-0450$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000134800 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c826cd3421c6d05725b35568f80b4c67$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000134800 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000134800 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-0498-6781$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000134800 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000134800 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000134800 9141_ $$y2018
000134800 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000134800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134800 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134800 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2015
000134800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134800 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134800 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134800 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000134800 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000134800 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2015
000134800 9201_ $$0I:(DE-He78)G105-20160331$$kG105$$lGentherapie von Tumoren$$x0
000134800 980__ $$ajournal
000134800 980__ $$aVDB
000134800 980__ $$aI:(DE-He78)G105-20160331
000134800 980__ $$aUNRESTRICTED