001     134807
005     20240229105041.0
024 7 _ |a 10.1186/s13014-018-1026-x
|2 doi
024 7 _ |a pmid:29739417
|2 pmid
024 7 _ |a pmc:PMC5941671
|2 pmc
024 7 _ |a altmetric:70394608
|2 altmetric
037 _ _ |a DKFZ-2018-00598
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a El Shafie, Rami A
|b 0
245 _ _ |a Evaluation of particle radiotherapy for the re-irradiation of recurrent intracranial meningioma.
260 _ _ |a London
|c 2018
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528116798_28969
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the advance of modern irradiation techniques, the role of radiotherapy (RT) for intracranial meningioma has increased significantly throughout the past years. Despite that tumor's generally favorable outcome with local control rates of up to 90% after ten years, progression after RT does occur. In those cases, re-irradiation is often difficult due to the limited radiation tolerance of the surrounding tissue. The aim of this analysis is to determine the value of particle therapy with its better dose conformity and higher biological efficacy for re-irradiating recurrent intracranial meningioma. It was performed within the framework of the 'clinical research group heavy ion therapy' and funded by the German Research Council (DFG, KFO 214).Forty-two patients treated with particle RT (protons (n = 8) or carbon ions (n = 34)) for recurrent intracranial meningioma were included in this analysis. Location of the primary lesion varied, including skull base (n = 31), convexity (n = 5) and falx (n = 6). 74% of the patients were categorized high-risk according to histology with a WHO grading of II (n = 25) or III (n = 6), in the remaining cases histology was either WHO grade I (n = 10) or unknown (n = 1). Median follow-up was 49,7 months.In all patients, re-irradiation could be performed safely without interruptions due to side effects. No grade IV or V toxicities according to CTCAE v4.0 were observed. Particle RT offered good overall local control rates with 71% progression-free survival (PFS) after 12 months, 56,5% after 24 months and a median PFS of 34,3 months (95% CI 11,7-56,9). Histology had a significant impact on PFS yielding a median PFS of 25,7 months (95% CI 5,8-45,5) for high-risk histology (WHO grades II and III) while median PFS was not reached for low-risk tumors (WHO grade I) (p = 0,03). Median time to local progression was 15,3 months (Q1-Q3 8,08-34,6). Overall survival (OS) after re-irradiation was 89,6% after 12 months and 71,4% after 24 months with a median OS of 61,0 months (95% CI 34,2-87,7). Again, WHO grading had an effect, as median OS for low-risk patients was not reached whereas for high-risk patients it was 45,5 months (95% CI 35,6-55,3).Re-irradiation using particle therapy is an effective method for the treatment of recurrent meningiomas. Interdisciplinary decision making is necessary to guarantee best treatment for every patient.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Czech, Maja
|b 1
700 1 _ |a Kessel, Kerstin A
|b 2
700 1 _ |a Habermehl, Daniel
|b 3
700 1 _ |a Weber, Dorothea
|b 4
700 1 _ |a Rieken, Stefan
|b 5
700 1 _ |a Bougatf, Nina
|b 6
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 7
|u dkfz
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 8
|u dkfz
700 1 _ |a Combs, Stephanie E
|b 9
773 _ _ |a 10.1186/s13014-018-1026-x
|g Vol. 13, no. 1, p. 86
|0 PERI:(DE-600)2224965-5
|n 1
|p 86
|t Radiation oncology
|v 13
|y 2018
|x 1748-717X
909 C O |o oai:inrepo02.dkfz.de:134807
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l Medizinische Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l KKE Strahlentherapie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21