000134821 001__ 134821
000134821 005__ 20240229105042.0
000134821 0247_ $$2doi$$a10.1016/j.kint.2018.01.008
000134821 0247_ $$2pmid$$apmid:29656901
000134821 0247_ $$2ISSN$$a0085-2538
000134821 0247_ $$2ISSN$$a1523-1755
000134821 0247_ $$2ISSN$$a2157-1716
000134821 0247_ $$2ISSN$$a2157-1724
000134821 0247_ $$2altmetric$$aaltmetric:38167747
000134821 037__ $$aDKFZ-2018-00611
000134821 041__ $$aeng
000134821 082__ $$a610
000134821 1001_ $$aBrück, Katharina$$b0
000134821 245__ $$aDifferent rates of progression and mortality in patients with chronic kidney disease at outpatient nephrology clinics across Europe.
000134821 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000134821 3367_ $$2DRIVER$$aarticle
000134821 3367_ $$2DataCite$$aOutput Types/Journal article
000134821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529307775_27070
000134821 3367_ $$2BibTeX$$aARTICLE
000134821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000134821 3367_ $$00$$2EndNote$$aJournal Article
000134821 520__ $$aThe incidence of renal replacement therapy varies across countries. However, little is known about the epidemiology of chronic kidney disease (CKD) outcomes. Here we describe progression and mortality risk of patients with CKD but not on renal replacement therapy at outpatient nephrology clinics across Europe using individual data from nine CKD cohorts participating in the European CKD Burden Consortium. A joint model assessed the mean change in estimated glomerular filtration rate (eGFR) and mortality risk simultaneously, thereby accounting for mortality risk when estimating eGFR decline and vice versa, while also correcting for the measurement error in eGFR. Results were adjusted for important risk factors (baseline eGFR, age, sex, albuminuria, primary renal disease, diabetes, hypertension, obesity and smoking) in 27,771 patients from five countries. The adjusted mean annual eGFR decline varied from 0.77 (95% confidence interval 0.45, 1.08) ml/min/1.73m2 in the Belgium cohort to 2.43 (2.11, 2.75) ml/min/1.73m2 in the Spanish cohort. As compared to the Italian PIRP cohort, the adjusted mortality hazard ratio varied from 0.22 (0.11, 0.43) in the London LACKABO cohort to 1.30 (1.13, 1.49) in the English CRISIS cohort. These results suggest that the eGFR decline showed minor variation but mortality showed the most variation. Thus, different health care organization systems are potentially associated with differences in outcome of patients with CKD within Europe. These results can be used by policy makers to plan resources on a regional, national and European level.
000134821 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000134821 588__ $$aDataset connected to CrossRef, PubMed,
000134821 7001_ $$aJager, Kitty J$$b1
000134821 7001_ $$aZoccali, Carmine$$b2
000134821 7001_ $$aBello, Aminu K$$b3
000134821 7001_ $$aMinutolo, Roberto$$b4
000134821 7001_ $$aIoannou, Kyriakos$$b5
000134821 7001_ $$aVerbeke, Francis$$b6
000134821 7001_ $$aVölzke, Henry$$b7
000134821 7001_ $$aArnlöv, Johan$$b8
000134821 7001_ $$aLeonardis, Daniela$$b9
000134821 7001_ $$aFerraro, Pietro Manuel$$b10
000134821 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b11$$udkfz
000134821 7001_ $$aCaplin, Ben$$b12
000134821 7001_ $$aKalra, Philip A$$b13
000134821 7001_ $$aWanner, Christoph$$b14
000134821 7001_ $$aCastelao, Alberto Martinez$$b15
000134821 7001_ $$aGorriz, Jose Luis$$b16
000134821 7001_ $$aHallan, Stein$$b17
000134821 7001_ $$aRothenbacher, Dietrich$$b18
000134821 7001_ $$aGibertoni, Dino$$b19
000134821 7001_ $$aDe Nicola, Luca$$b20
000134821 7001_ $$aHeinze, Georg$$b21
000134821 7001_ $$aVan Biesen, Wim$$b22
000134821 7001_ $$aStel, Vianda S$$b23
000134821 7001_ $$aConsortium, European CKD Burden$$b24$$eCollaboration Author
000134821 773__ $$0PERI:(DE-600)2007940-0$$a10.1016/j.kint.2018.01.008$$gVol. 93, no. 6, p. 1432 - 1441$$n6$$p1432 - 1441$$tKidney international$$v93$$x0085-2538$$y2018
000134821 909CO $$ooai:inrepo02.dkfz.de:134821$$pVDB
000134821 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000134821 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000134821 9141_ $$y2018
000134821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000134821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000134821 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000134821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bKIDNEY INT SUPPL : 2015
000134821 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000134821 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000134821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000134821 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000134821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000134821 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000134821 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000134821 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000134821 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000134821 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bKIDNEY INT : 2015
000134821 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bKIDNEY INT SUPPL : 2015
000134821 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000134821 980__ $$ajournal
000134821 980__ $$aVDB
000134821 980__ $$aI:(DE-He78)C070-20160331
000134821 980__ $$aUNRESTRICTED