001     134835
005     20240229105043.0
024 7 _ |a 10.1016/j.jim.2018.03.015
|2 doi
024 7 _ |a pmid:29605230
|2 pmid
024 7 _ |a 0022-1759
|2 ISSN
024 7 _ |a 1872-7905
|2 ISSN
024 7 _ |a altmetric:35127005
|2 altmetric
037 _ _ |a DKFZ-2018-00625
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Michel, Chloe
|0 P:(DE-He78)a4cd801173d81a4409262f88a8ecdf55
|b 0
|e First author
|u dkfz
245 _ _ |a An efficient protocol for in vivo labeling of proliferating epithelial cells.
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529307235_27073
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The study of organogenesis, tissue-homeostasis and regeneration requires the precise assessment of in vivo cell proliferation. To this end a host of methods have been developed to detect and quantify DNA synthesis in proliferating cells. These include cell labeling with various nucleotide analogues and fluorescence reporter-based animal models with each method presenting its idiosyncratic shortcomings. Quantitative assessment of epithelial cell turnover has been partly hampered due to their variable and limited in vivo accessibility and the requirement for harsher isolation procedures to procure single cells for FACS analysis. Here, we report a reliable protocol to study in vivo cell proliferation of epithelial cells in mice by repeatedly injecting EdU intravenously for an extended 12-day period. EdU incorporation was quantitated ex vivo by FACS after tissue dissociation in order to obtain single epithelial cell suspensions. As a lead population, we analyzed thymic epithelial cells (TECs), where we were able to label compartmentalized TEC subsets to saturation without apparent toxic effects on the thymus architecture or stress-sensitive TEC lineage differentiation. The data is in concordance with the prevailing model of medullary TEC terminal differentiation that includes the post-Aire stage. The same protocol was successfully applied to epithelial cells of various other organs - skin, lymph node, kidney and small intestine - tissues with widely varying frequencies and rates of proliferating epithelial cells.
536 _ _ |a 314 - Tumor immunology (POF3-314)
|0 G:(DE-HGF)POF3-314
|c POF3-314
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Küchler, Rita
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Martin, Iris
|0 P:(DE-He78)f0600f058dd0ac0a546552ef34476136
|b 2
|u dkfz
700 1 _ |a Kyewski, Bruno
|0 P:(DE-He78)08a57258198dcedd8ff8ac7eef40341a
|b 3
|u dkfz
700 1 _ |a Pinto, Sheena
|0 P:(DE-He78)d2f9dbffa7b9a979f9bc4d81e769497e
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.jim.2018.03.015
|g Vol. 457, p. 82 - 86
|0 PERI:(DE-600)1500495-8
|p 82 - 86
|t Journal of immunological methods
|v 457
|y 2018
|x 0022-1759
909 C O |o oai:inrepo02.dkfz.de:134835
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a4cd801173d81a4409262f88a8ecdf55
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)f0600f058dd0ac0a546552ef34476136
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)08a57258198dcedd8ff8ac7eef40341a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d2f9dbffa7b9a979f9bc4d81e769497e
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-314
|2 G:(DE-HGF)POF3-300
|v Tumor immunology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IMMUNOL METHODS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)D090-20160331
|k D090
|l Entwicklungsimmunologie
|x 0
920 1 _ |0 I:(DE-He78)A110-20160331
|k A110
|l Genetik der Hautkarcinogenese
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D090-20160331
980 _ _ |a I:(DE-He78)A110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21