001     134853
005     20240229105044.0
024 7 _ |a 10.1093/neuonc/nox188
|2 doi
024 7 _ |a pmid:29036412
|2 pmid
024 7 _ |a pmc:PMC5961168
|2 pmc
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a altmetric:26719195
|2 altmetric
037 _ _ |a DKFZ-2018-00643
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Kickingereder, Philipp
|b 0
245 _ _ |a Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma.
260 _ _ |a Oxford
|c 2018
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661347684_31348
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of this study was to analyze the potential of radiomics for disease stratification beyond key molecular, clinical, and standard imaging features in patients with glioblastoma.Quantitative imaging features (n = 1043) were extracted from the multiparametric MRI of 181 patients with newly diagnosed glioblastoma prior to standard-of-care treatment (allocated to a discovery and a validation set, 2:1 ratio). A subset of 386/1043 features were identified as reproducible (in an independent MRI test-retest cohort) and selected for analysis. A penalized Cox model with 10-fold cross-validation (Coxnet) was fitted on the discovery set to construct a radiomic signature for predicting progression-free and overall survival (PFS and OS). The incremental value of a radiomic signature beyond molecular (O6-methylguanine-DNA methyltransferase [MGMT] promoter methylation, DNA methylation subgroups), clinical (patient's age, KPS, extent of resection, adjuvant treatment), and standard imaging parameters (tumor volumes) for stratifying PFS and OS was assessed with multivariate Cox models (performance quantified with prediction error curves).The radiomic signature (constructed from 8/386 features identified through Coxnet) increased the prediction accuracy for PFS and OS (in both discovery and validation sets) beyond the assessed molecular, clinical, and standard imaging parameters (P ≤ 0.01). Prediction errors decreased by 36% for PFS and 37% for OS when adding the radiomic signature (compared with 29% and 27%, respectively, with molecular + clinical features alone). The radiomic signature was-along with MGMT status-the only parameter with independent significance on multivariate analysis (P ≤ 0.01).Our study stresses the role of integrating radiomics into a multilayer decision framework with key molecular and clinical features to improve disease stratification and to potentially advance personalized treatment of patients with glioblastoma.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Neuberger, Ulf
|b 1
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 2
700 1 _ |a Piechotta, Paula L
|b 3
700 1 _ |a Götz, Michael
|0 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
|b 4
700 1 _ |a Wick, Antje
|b 5
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 6
700 1 _ |a Kratz, Annekathrin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shinohara, Russell T
|b 8
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 9
700 1 _ |a Radbruch, Alexander
|0 P:(DE-He78)77588f5b9413339755a66e739d316c7d
|b 10
700 1 _ |a Muschelli, John
|b 11
700 1 _ |a Unterberg, Andreas
|b 12
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 13
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 14
700 1 _ |a Herold-Mende, Christel
|0 P:(DE-He78)c146c0b611b8fb654444ec078766f5ea
|b 15
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 16
700 1 _ |a von Deimling, Andreas
|0 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
|b 17
700 1 _ |a Wick, Wolfgang
|0 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
|b 18
700 1 _ |a Capper, David
|0 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
|b 19
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 20
|e Last author
700 1 _ |a Bendszus, Martin
|b 21
773 _ _ |a 10.1093/neuonc/nox188
|g Vol. 20, no. 6, p. 848 - 857
|0 PERI:(DE-600)2094060-9
|n 6
|p 848 - 857
|t Neuro-Oncology
|v 20
|y 2018
|x 1523-5866
909 C O |p VDB
|o oai:inrepo02.dkfz.de:134853
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)abd768f879e71d08068d48fabb7e96cf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)77588f5b9413339755a66e739d316c7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)c146c0b611b8fb654444ec078766f5ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)a8a10626a848d31e70cfd96a133cc144
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)92e9783ca7025f36ce14e12cd348d2ee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEURO-ONCOLOGY : 2015
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 4
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 5
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 6
920 1 _ |0 I:(DE-He78)G370-20160331
|k G370
|l KKE Neuroonkologie
|x 7
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 8
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)G370-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21