001     135948
005     20240229105047.0
024 7 _ |a 10.1148/radiol.2017170273
|2 doi
024 7 _ |a pmid:29461172
|2 pmid
024 7 _ |a 0033-8419
|2 ISSN
024 7 _ |a 1527-1315
|2 ISSN
024 7 _ |a altmetric:33448040
|2 altmetric
037 _ _ |a DKFZ-2018-00685
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bickelhaupt, Sebastian
|0 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
|b 0
|e First author
245 _ _ |a Radiomics Based on Adapted Diffusion Kurtosis Imaging Helps to Clarify Most Mammographic Findings Suspicious for Cancer.
260 _ _ |a Oak Brook, Ill.
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661341175_30405
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose To evaluate a radiomics model of Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 breast lesions extracted from breast-tissue-optimized kurtosis magnetic resonance (MR) imaging for lesion characterization by using a sensitivity threshold similar to that of biopsy. Materials and Methods This institutional study included 222 women at two independent study sites (site 1: training set of 95 patients; mean age ± standard deviation, 58.6 years ± 6.6; 61 malignant and 34 benign lesions; site 2: independent test set of 127 patients; mean age, 58.2 years ± 6.8; 61 malignant and 66 benign lesions). All women presented with a finding suspicious for cancer at x-ray mammography (BI-RADS 4 or 5) and an indication for biopsy. Before biopsy, diffusion-weighted MR imaging (b values, 0-1500 sec/mm2) was performed by using 1.5-T imagers from different MR imaging vendors. Lesions were segmented and voxel-based kurtosis fitting adapted to account for fat signal contamination was performed. A radiomics feature model was developed by using a random forest regressor. The fixed model was tested on an independent test set. Conventional interpretations of MR imaging were also assessed for comparison. Results The radiomics feature model reduced false-positive results from 66 to 20 (specificity 70.0% [46 of 66]) at the predefined sensitivity of greater than 98.0% [60 of 61] in the independent test set, with BI-RADS 4a and 4b lesions benefiting from the analysis (specificity 74.0%, [37 of 50]; 60.0% [nine of 15]) and BI-RADS 5 lesions showing no added benefit. The model significantly improved specificity compared with the median apparent diffusion coefficient (P < .001) and apparent kurtosis coefficient (P = .02) alone. Conventional reading of dynamic contrast material-enhanced MR imaging provided sensitivity of 91.8% (56 of 61) and a specificity of 74.2% (49 of 66). Accounting for fat signal intensity during fitting significantly improved the area under the curve of the model (P = .001). Conclusion A radiomics model based on kurtosis diffusion-weighted imaging performed by using MR imaging machines from different vendors allowed for reliable differentiation between malignant and benign breast lesions in both a training and an independent test data set. © RSNA, 2018 Online supplemental material is available for this article.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Jaeger, Paul Ferdinand
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Laun, Frederik
|0 P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d
|b 2
700 1 _ |a Lederer, Wolfgang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Daniel, Heidi
|b 4
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 5
700 1 _ |a Wuesthof, Lorenz
|b 6
700 1 _ |a Paech, Daniel
|0 P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc
|b 7
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 8
700 1 _ |a Radbruch, Alexander
|0 P:(DE-He78)77588f5b9413339755a66e739d316c7d
|b 9
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 10
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 11
700 1 _ |a Steudle, Franziska Hildegard
|b 12
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 13
|e Last author
773 _ _ |a 10.1148/radiol.2017170273
|g Vol. 287, no. 3, p. 761 - 770
|0 PERI:(DE-600)2010588-5
|n 3
|p 761 - 770
|t Radiology
|v 287
|y 2018
|x 1527-1315
909 C O |p VDB
|o oai:inrepo02.dkfz.de:135948
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d2d971750bce6217eb90fff9b01e61f9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b709e6df1ec6b63e5ffad4c8131f6f4d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)77588f5b9413339755a66e739d316c7d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RADIOLOGY : 2015
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21