000135960 001__ 135960
000135960 005__ 20240229105048.0
000135960 0247_ $$2doi$$a10.1053/j.gastro.2018.02.021
000135960 0247_ $$2pmid$$apmid:29458155
000135960 0247_ $$2pmc$$apmc:PMC5985207
000135960 0247_ $$2ISSN$$a0016-5085
000135960 0247_ $$2ISSN$$a1528-0012
000135960 0247_ $$2altmetric$$aaltmetric:34086071
000135960 037__ $$aDKFZ-2018-00697
000135960 041__ $$aeng
000135960 082__ $$a610
000135960 1001_ $$aJeon, Jihyoun$$b0
000135960 245__ $$aDetermining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors.
000135960 260__ $$aStanford, Calif.$$bHighWire Press$$c2018
000135960 3367_ $$2DRIVER$$aarticle
000135960 3367_ $$2DataCite$$aOutput Types/Journal article
000135960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1530523935_2323
000135960 3367_ $$2BibTeX$$aARTICLE
000135960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000135960 3367_ $$00$$2EndNote$$aJournal Article
000135960 520__ $$aGuidelines for initiating colorectal cancer (CRC) screening are based on family history but do not consider lifestyle, environmental, or genetic risk factors. We developed models to determine risk of CRC, based on lifestyle and environmental factors and genetic variants, and to identify an optimal age to begin screening.We collected data from 9748 CRC cases and 10,590 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colorectal Transdisciplinary study, from 1992 through 2005. Half of the participants were used to develop the risk determination model and the other half were used to evaluate the discriminatory accuracy (validation set). Models of CRC risk were created based on family history, 19 lifestyle and environmental factors (E-score), and 63 CRC-associated single-nucleotide polymorphisms identified in genome-wide association studies (G-score). We evaluated the discriminatory accuracy of the models by calculating area under the receiver operating characteristic curve values, adjusting for study, age, and endoscopy history for the validation set. We used the models to project the 10-year absolute risk of CRC for a given risk profile and recommend ages to begin screening in comparison to CRC risk for an average individual at 50 years of age, using external population incidence rates for non-Hispanic whites from the Surveillance, Epidemiology, and End Results program registry.In our models, E-score and G-score each determined risk of CRC with greater accuracy than family history. A model that combined both scores and family history estimated CRC risk with an area under the receiver operating characteristic curve value of 0.63 (95% confidence interval, 0.62-0.64) for men and 0.62 (95% confidence interval, 0.61-0.63) for women; area under the receiver operating characteristic curve values based on only family history ranged from 0.53 to 0.54 and those based only E-score or G-score ranged from 0.59 to 0.60. Although screening is recommended to begin at age 50 years for individuals with no family history of CRC, starting ages calculated based on combined E-score and G-score differed by 12 years for men and 14 for women, for individuals with the highest vs the lowest 10% of risk.We used data from 2 large international consortia to develop CRC risk calculation models that included genetic and environmental factors along with family history. These determine risk of CRC and starting ages for screening with greater accuracy than the family history only model, which is based on the current screening guideline. These scoring systems might serve as a first step toward developing individualized CRC prevention strategies.
000135960 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000135960 588__ $$aDataset connected to CrossRef, PubMed,
000135960 7001_ $$aDu, Mengmeng$$b1
000135960 7001_ $$aSchoen, Robert E$$b2
000135960 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b3$$udkfz
000135960 7001_ $$aNewcomb, Polly A$$b4
000135960 7001_ $$aBerndt, Sonja I$$b5
000135960 7001_ $$aCaan, Bette$$b6
000135960 7001_ $$aCampbell, Peter T$$b7
000135960 7001_ $$aChan, Andrew T$$b8
000135960 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b9$$udkfz
000135960 7001_ $$aGiles, Graham G$$b10
000135960 7001_ $$aGong, Jian$$b11
000135960 7001_ $$aHarrison, Tabitha A$$b12
000135960 7001_ $$aHuyghe, Jeroen R$$b13
000135960 7001_ $$aJacobs, Eric J$$b14
000135960 7001_ $$aLi, Li$$b15
000135960 7001_ $$aLin, Yi$$b16
000135960 7001_ $$aLe Marchand, Loïc$$b17
000135960 7001_ $$aPotter, John D$$b18
000135960 7001_ $$aQu, Conghui$$b19
000135960 7001_ $$aBien, Stephanie A$$b20
000135960 7001_ $$aZubair, Niha$$b21
000135960 7001_ $$aMacinnis, Robert J$$b22
000135960 7001_ $$aBuchanan, Daniel D$$b23
000135960 7001_ $$aHopper, John L$$b24
000135960 7001_ $$aCao, Yin$$b25
000135960 7001_ $$aNishihara, Reiko$$b26
000135960 7001_ $$aRennert, Gad$$b27
000135960 7001_ $$aSlattery, Martha L$$b28
000135960 7001_ $$aThomas, Duncan C$$b29
000135960 7001_ $$aWoods, Michael O$$b30
000135960 7001_ $$aPrentice, Ross L$$b31
000135960 7001_ $$aGruber, Stephen B$$b32
000135960 7001_ $$aZheng, Yingye$$b33
000135960 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b34$$udkfz
000135960 7001_ $$aHayes, Richard B$$b35
000135960 7001_ $$aWhite, Emily$$b36
000135960 7001_ $$aPeters, Ulrike$$b37
000135960 7001_ $$aHsu, Li$$b38
000135960 7001_ $$aConsortium, Colorectal Transdisciplinary Study and Genetics and Epidemiology of Colorectal Cancer$$b39$$eCollaboration Author
000135960 773__ $$0PERI:(DE-600)1478699-0$$a10.1053/j.gastro.2018.02.021$$gVol. 154, no. 8, p. 2152 - 2164.e19$$n8$$p2152 - 2164.e19$$tGastroenterology$$v154$$x0016-5085$$y2018
000135960 909CO $$ooai:inrepo02.dkfz.de:135960$$pVDB
000135960 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000135960 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000135960 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b34$$kDKFZ
000135960 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000135960 9141_ $$y2018
000135960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGASTROENTEROLOGY : 2015
000135960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000135960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000135960 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000135960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000135960 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000135960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000135960 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000135960 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000135960 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000135960 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000135960 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bGASTROENTEROLOGY : 2015
000135960 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000135960 9201_ $$0I:(DE-He78)G110-20160331$$kG110$$lPräventive Onkologie$$x1
000135960 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x2
000135960 980__ $$ajournal
000135960 980__ $$aVDB
000135960 980__ $$aI:(DE-He78)C070-20160331
000135960 980__ $$aI:(DE-He78)G110-20160331
000135960 980__ $$aI:(DE-He78)C020-20160331
000135960 980__ $$aUNRESTRICTED