001     135960
005     20240229105048.0
024 7 _ |a 10.1053/j.gastro.2018.02.021
|2 doi
024 7 _ |a pmid:29458155
|2 pmid
024 7 _ |a pmc:PMC5985207
|2 pmc
024 7 _ |a 0016-5085
|2 ISSN
024 7 _ |a 1528-0012
|2 ISSN
024 7 _ |a altmetric:34086071
|2 altmetric
037 _ _ |a DKFZ-2018-00697
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jeon, Jihyoun
|b 0
245 _ _ |a Determining Risk of Colorectal Cancer and Starting Age of Screening Based on Lifestyle, Environmental, and Genetic Factors.
260 _ _ |a Stanford, Calif.
|c 2018
|b HighWire Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530523935_2323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Guidelines for initiating colorectal cancer (CRC) screening are based on family history but do not consider lifestyle, environmental, or genetic risk factors. We developed models to determine risk of CRC, based on lifestyle and environmental factors and genetic variants, and to identify an optimal age to begin screening.We collected data from 9748 CRC cases and 10,590 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colorectal Transdisciplinary study, from 1992 through 2005. Half of the participants were used to develop the risk determination model and the other half were used to evaluate the discriminatory accuracy (validation set). Models of CRC risk were created based on family history, 19 lifestyle and environmental factors (E-score), and 63 CRC-associated single-nucleotide polymorphisms identified in genome-wide association studies (G-score). We evaluated the discriminatory accuracy of the models by calculating area under the receiver operating characteristic curve values, adjusting for study, age, and endoscopy history for the validation set. We used the models to project the 10-year absolute risk of CRC for a given risk profile and recommend ages to begin screening in comparison to CRC risk for an average individual at 50 years of age, using external population incidence rates for non-Hispanic whites from the Surveillance, Epidemiology, and End Results program registry.In our models, E-score and G-score each determined risk of CRC with greater accuracy than family history. A model that combined both scores and family history estimated CRC risk with an area under the receiver operating characteristic curve value of 0.63 (95% confidence interval, 0.62-0.64) for men and 0.62 (95% confidence interval, 0.61-0.63) for women; area under the receiver operating characteristic curve values based on only family history ranged from 0.53 to 0.54 and those based only E-score or G-score ranged from 0.59 to 0.60. Although screening is recommended to begin at age 50 years for individuals with no family history of CRC, starting ages calculated based on combined E-score and G-score differed by 12 years for men and 14 for women, for individuals with the highest vs the lowest 10% of risk.We used data from 2 large international consortia to develop CRC risk calculation models that included genetic and environmental factors along with family history. These determine risk of CRC and starting ages for screening with greater accuracy than the family history only model, which is based on the current screening guideline. These scoring systems might serve as a first step toward developing individualized CRC prevention strategies.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Du, Mengmeng
|b 1
700 1 _ |a Schoen, Robert E
|b 2
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 3
|u dkfz
700 1 _ |a Newcomb, Polly A
|b 4
700 1 _ |a Berndt, Sonja I
|b 5
700 1 _ |a Caan, Bette
|b 6
700 1 _ |a Campbell, Peter T
|b 7
700 1 _ |a Chan, Andrew T
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
|u dkfz
700 1 _ |a Giles, Graham G
|b 10
700 1 _ |a Gong, Jian
|b 11
700 1 _ |a Harrison, Tabitha A
|b 12
700 1 _ |a Huyghe, Jeroen R
|b 13
700 1 _ |a Jacobs, Eric J
|b 14
700 1 _ |a Li, Li
|b 15
700 1 _ |a Lin, Yi
|b 16
700 1 _ |a Le Marchand, Loïc
|b 17
700 1 _ |a Potter, John D
|b 18
700 1 _ |a Qu, Conghui
|b 19
700 1 _ |a Bien, Stephanie A
|b 20
700 1 _ |a Zubair, Niha
|b 21
700 1 _ |a Macinnis, Robert J
|b 22
700 1 _ |a Buchanan, Daniel D
|b 23
700 1 _ |a Hopper, John L
|b 24
700 1 _ |a Cao, Yin
|b 25
700 1 _ |a Nishihara, Reiko
|b 26
700 1 _ |a Rennert, Gad
|b 27
700 1 _ |a Slattery, Martha L
|b 28
700 1 _ |a Thomas, Duncan C
|b 29
700 1 _ |a Woods, Michael O
|b 30
700 1 _ |a Prentice, Ross L
|b 31
700 1 _ |a Gruber, Stephen B
|b 32
700 1 _ |a Zheng, Yingye
|b 33
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 34
|u dkfz
700 1 _ |a Hayes, Richard B
|b 35
700 1 _ |a White, Emily
|b 36
700 1 _ |a Peters, Ulrike
|b 37
700 1 _ |a Hsu, Li
|b 38
700 1 _ |a Consortium, Colorectal Transdisciplinary Study and Genetics and Epidemiology of Colorectal Cancer
|b 39
|e Collaboration Author
773 _ _ |a 10.1053/j.gastro.2018.02.021
|g Vol. 154, no. 8, p. 2152 - 2164.e19
|0 PERI:(DE-600)1478699-0
|n 8
|p 2152 - 2164.e19
|t Gastroenterology
|v 154
|y 2018
|x 0016-5085
909 C O |o oai:inrepo02.dkfz.de:135960
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GASTROENTEROLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b GASTROENTEROLOGY : 2015
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21