000136013 001__ 136013 000136013 005__ 20240229105049.0 000136013 0247_ $$2doi$$a10.1158/1055-9965.EPI-17-0649 000136013 0247_ $$2pmid$$apmid:29563134 000136013 0247_ $$2ISSN$$a1055-9965 000136013 0247_ $$2ISSN$$a1538-7755 000136013 0247_ $$2altmetric$$aaltmetric:34747464 000136013 037__ $$aDKFZ-2018-00713 000136013 041__ $$aeng 000136013 082__ $$a610 000136013 1001_ $$aAssi, Nada$$b0 000136013 245__ $$aAre Metabolic Signatures Mediating the Relationship between Lifestyle Factors and Hepatocellular Carcinoma Risk? Results from a Nested Case-Control Study in EPIC. 000136013 260__ $$aPhiladelphia, Pa.$$bAACR$$c2018 000136013 3367_ $$2DRIVER$$aarticle 000136013 3367_ $$2DataCite$$aOutput Types/Journal article 000136013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531126321_16864 000136013 3367_ $$2BibTeX$$aARTICLE 000136013 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000136013 3367_ $$00$$2EndNote$$aJournal Article 000136013 520__ $$aBackground: The 'meeting-in-the-middle' (MITM) is a principle to identify exposure biomarkers that are also predictors of disease. The MITM statistical framework was applied in a nested case-control study of hepatocellular carcinoma (HCC) within European Prospective Investigation into Cancer and Nutrition (EPIC), where healthy lifestyle index (HLI) variables were related to targeted serum metabolites.Methods: Lifestyle and targeted metabolomic data were available from 147 incident HCC cases and 147 matched controls. Partial least squares analysis related 7 lifestyle variables from a modified HLI to a set of 132 serum-measured metabolites and a liver function score. Mediation analysis evaluated whether metabolic profiles mediated the relationship between each lifestyle exposure and HCC risk.Results: Exposure-related metabolic signatures were identified. Particularly, the body mass index (BMI)-associated metabolic component was positively related to glutamic acid, tyrosine, PC aaC38:3, and liver function score and negatively to lysoPC aC17:0 and aC18:2. The lifetime alcohol-specific signature had negative loadings on sphingomyelins (SM C16:1, C18:1, SM(OH) C14:1, C16:1 and C22:2). Both exposures were associated with increased HCC with total effects (TE) = 1.23 (95% confidence interval = 0.93-1.62) and 1.40 (1.14-1.72), respectively, for BMI and alcohol consumption. Both metabolic signatures mediated the association between BMI and lifetime alcohol consumption and HCC with natural indirect effects, respectively, equal to 1.56 (1.24-1.96) and 1.09 (1.03-1.15), accounting for a proportion mediated of 100% and 24%.Conclusions: In a refined MITM framework, relevant metabolic signatures were identified as mediators in the relationship between lifestyle exposures and HCC risk.Impact: The understanding of the biological basis for the relationship between modifiable exposures and cancer would pave avenues for clinical and public health interventions on metabolic mediators. Cancer Epidemiol Biomarkers Prev; 27(5); 531-40. ©2018 AACR. 000136013 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000136013 588__ $$aDataset connected to CrossRef, PubMed, 000136013 7001_ $$aThomas, Duncan C$$b1 000136013 7001_ $$aLeitzmann, Michael$$b2 000136013 7001_ $$aStepien, Magdalena$$b3 000136013 7001_ $$aChajès, Véronique$$b4 000136013 7001_ $$aPhilip, Thierry$$b5 000136013 7001_ $$aVineis, Paolo$$b6 000136013 7001_ $$aBamia, Christina$$b7 000136013 7001_ $$aBoutron-Ruault, Marie-Christine$$b8 000136013 7001_ $$aSandanger, Torkjel M$$b9 000136013 7001_ $$aMolinuevo, Amaia$$b10 000136013 7001_ $$aBoshuizen, Hendriek C$$b11 000136013 7001_ $$aSundkvist, Anneli$$b12 000136013 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b13$$udkfz 000136013 7001_ $$aTravis, Ruth C$$b14 000136013 7001_ $$aOvervad, Kim$$b15 000136013 7001_ $$aRiboli, Elio$$b16 000136013 7001_ $$aGunter, Marc J$$b17 000136013 7001_ $$aScalbert, Augustin$$b18 000136013 7001_ $$aJenab, Mazda$$b19 000136013 7001_ $$aFerrari, Pietro$$b20 000136013 7001_ $$aViallon, Vivian$$b21 000136013 773__ $$0PERI:(DE-600)2036781-8$$a10.1158/1055-9965.EPI-17-0649$$gVol. 27, no. 5, p. 531 - 540$$n5$$p531 - 540$$tCancer epidemiology, biomarkers & prevention$$v27$$x1538-7755$$y2018 000136013 909CO $$ooai:inrepo02.dkfz.de:136013$$pVDB 000136013 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000136013 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000136013 9141_ $$y2018 000136013 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCER EPIDEM BIOMAR : 2015 000136013 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000136013 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000136013 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000136013 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000136013 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000136013 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000136013 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000136013 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000136013 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000136013 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000136013 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000136013 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0 000136013 980__ $$ajournal 000136013 980__ $$aVDB 000136013 980__ $$aI:(DE-He78)C020-20160331 000136013 980__ $$aUNRESTRICTED