001     136013
005     20240229105049.0
024 7 _ |a 10.1158/1055-9965.EPI-17-0649
|2 doi
024 7 _ |a pmid:29563134
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:34747464
|2 altmetric
037 _ _ |a DKFZ-2018-00713
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Assi, Nada
|b 0
245 _ _ |a Are Metabolic Signatures Mediating the Relationship between Lifestyle Factors and Hepatocellular Carcinoma Risk? Results from a Nested Case-Control Study in EPIC.
260 _ _ |a Philadelphia, Pa.
|c 2018
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531126321_16864
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: The 'meeting-in-the-middle' (MITM) is a principle to identify exposure biomarkers that are also predictors of disease. The MITM statistical framework was applied in a nested case-control study of hepatocellular carcinoma (HCC) within European Prospective Investigation into Cancer and Nutrition (EPIC), where healthy lifestyle index (HLI) variables were related to targeted serum metabolites.Methods: Lifestyle and targeted metabolomic data were available from 147 incident HCC cases and 147 matched controls. Partial least squares analysis related 7 lifestyle variables from a modified HLI to a set of 132 serum-measured metabolites and a liver function score. Mediation analysis evaluated whether metabolic profiles mediated the relationship between each lifestyle exposure and HCC risk.Results: Exposure-related metabolic signatures were identified. Particularly, the body mass index (BMI)-associated metabolic component was positively related to glutamic acid, tyrosine, PC aaC38:3, and liver function score and negatively to lysoPC aC17:0 and aC18:2. The lifetime alcohol-specific signature had negative loadings on sphingomyelins (SM C16:1, C18:1, SM(OH) C14:1, C16:1 and C22:2). Both exposures were associated with increased HCC with total effects (TE) = 1.23 (95% confidence interval = 0.93-1.62) and 1.40 (1.14-1.72), respectively, for BMI and alcohol consumption. Both metabolic signatures mediated the association between BMI and lifetime alcohol consumption and HCC with natural indirect effects, respectively, equal to 1.56 (1.24-1.96) and 1.09 (1.03-1.15), accounting for a proportion mediated of 100% and 24%.Conclusions: In a refined MITM framework, relevant metabolic signatures were identified as mediators in the relationship between lifestyle exposures and HCC risk.Impact: The understanding of the biological basis for the relationship between modifiable exposures and cancer would pave avenues for clinical and public health interventions on metabolic mediators. Cancer Epidemiol Biomarkers Prev; 27(5); 531-40. ©2018 AACR.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Thomas, Duncan C
|b 1
700 1 _ |a Leitzmann, Michael
|b 2
700 1 _ |a Stepien, Magdalena
|b 3
700 1 _ |a Chajès, Véronique
|b 4
700 1 _ |a Philip, Thierry
|b 5
700 1 _ |a Vineis, Paolo
|b 6
700 1 _ |a Bamia, Christina
|b 7
700 1 _ |a Boutron-Ruault, Marie-Christine
|b 8
700 1 _ |a Sandanger, Torkjel M
|b 9
700 1 _ |a Molinuevo, Amaia
|b 10
700 1 _ |a Boshuizen, Hendriek C
|b 11
700 1 _ |a Sundkvist, Anneli
|b 12
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 13
|u dkfz
700 1 _ |a Travis, Ruth C
|b 14
700 1 _ |a Overvad, Kim
|b 15
700 1 _ |a Riboli, Elio
|b 16
700 1 _ |a Gunter, Marc J
|b 17
700 1 _ |a Scalbert, Augustin
|b 18
700 1 _ |a Jenab, Mazda
|b 19
700 1 _ |a Ferrari, Pietro
|b 20
700 1 _ |a Viallon, Vivian
|b 21
773 _ _ |a 10.1158/1055-9965.EPI-17-0649
|g Vol. 27, no. 5, p. 531 - 540
|0 PERI:(DE-600)2036781-8
|n 5
|p 531 - 540
|t Cancer epidemiology, biomarkers & prevention
|v 27
|y 2018
|x 1538-7755
909 C O |o oai:inrepo02.dkfz.de:136013
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21