000136030 001__ 136030
000136030 005__ 20240229105051.0
000136030 0247_ $$2doi$$a10.1080/10543406.2017.1397005
000136030 0247_ $$2pmid$$apmid:29173022
000136030 0247_ $$2ISSN$$a1054-3406
000136030 0247_ $$2ISSN$$a1520-5711
000136030 037__ $$aDKFZ-2018-00730
000136030 041__ $$aeng
000136030 082__ $$a570
000136030 1001_ $$00000-0003-0348-8163$$aHolland-Letz, Tim$$b0$$eFirst author
000136030 245__ $$aParametric modeling and optimal experimental designs for estimating isobolograms for drug interactions in toxicology.
000136030 260__ $$aPhiladelphia, PA$$bTaylor & Francis$$c2018
000136030 3367_ $$2DRIVER$$aarticle
000136030 3367_ $$2DataCite$$aOutput Types/Journal article
000136030 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531125686_26900
000136030 3367_ $$2BibTeX$$aARTICLE
000136030 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136030 3367_ $$00$$2EndNote$$aJournal Article
000136030 520__ $$aIn toxicology and related areas, interaction effects between two substances are commonly expressed through a combination index [Formula: see text] evaluated separately at different effect levels and mixture ratios. Often, these indices are combined into a graphical representation, the isobologram. Instead of estimating the combination indices at the experimental mixture ratios only, we propose a simple parametric model for estimating the underlying interaction function. We integrate this approach into a joint model where both the parameters of the dose-response functions of the singular substances and the interaction parameters can be estimated simultaneously. As an additional benefit, this concept allows to determine optimal statistical designs for combination studies optimizing the estimation of the interaction function as a whole. From an optimal design perspective, finding the interaction parameters generally corresponds to a [Formula: see text]-optimality resp. [Formula: see text]-optimality design problem, while estimation of all underlying dose response parameters corresponds to a [Formula: see text]-optimality design problem. We show how optimal designs can be obtained in either case as well as how combination designs providing reasonable performance in regard to both criteria can be determined by putting a constraint on the efficiency in regard to one of the criteria and optimizing for the other. As all designs require prior information about model parameter values, which may be unreliable in practice, the effect of misspecifications is investigated as well.
000136030 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000136030 588__ $$aDataset connected to CrossRef, PubMed,
000136030 7001_ $$aGunkel, Nikolas$$b1
000136030 7001_ $$0P:(DE-He78)ae7d62a12f653817d21fb69752369524$$aAmtmann, Eberhard$$b2$$udkfz
000136030 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$eLast author
000136030 773__ $$0PERI:(DE-600)2008925-9$$a10.1080/10543406.2017.1397005$$gVol. 28, no. 4, p. 763 - 777$$n4$$p763 - 777$$tJournal of biopharmaceutical statistics$$v28$$x1520-5711$$y2018
000136030 909CO $$ooai:inrepo02.dkfz.de:136030$$pVDB
000136030 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-0348-8163$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000136030 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ae7d62a12f653817d21fb69752369524$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000136030 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000136030 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000136030 9141_ $$y2018
000136030 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000136030 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOPHARM STAT : 2015
000136030 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136030 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136030 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136030 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000136030 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000136030 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136030 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136030 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136030 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000136030 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lBiostatistik$$x0
000136030 9201_ $$0I:(DE-He78)G404-20160331$$kG404$$lWirkstoffforschung$$x1
000136030 980__ $$ajournal
000136030 980__ $$aVDB
000136030 980__ $$aI:(DE-He78)C060-20160331
000136030 980__ $$aI:(DE-He78)G404-20160331
000136030 980__ $$aUNRESTRICTED