000136655 001__ 136655
000136655 005__ 20240229105052.0
000136655 0247_ $$2doi$$a10.1093/ajcn/nqy074
000136655 0247_ $$2pmid$$apmid:29924298
000136655 0247_ $$2ISSN$$a0002-9165
000136655 0247_ $$2ISSN$$a0095-9871
000136655 0247_ $$2ISSN$$a1938-3207
000136655 0247_ $$2ISSN$$a1938-3215
000136655 0247_ $$2altmetric$$aaltmetric:43919643
000136655 037__ $$aDKFZ-2018-01124
000136655 041__ $$aeng
000136655 082__ $$a570
000136655 1001_ $$aAssi, Nada$$b0
000136655 245__ $$aMetabolic signature of healthy lifestyle and its relation with risk of hepatocellular carcinoma in a large European cohort.
000136655 260__ $$aBethesda, Md.$$bSoc.$$c2018
000136655 3367_ $$2DRIVER$$aarticle
000136655 3367_ $$2DataCite$$aOutput Types/Journal article
000136655 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536311881_14297
000136655 3367_ $$2BibTeX$$aARTICLE
000136655 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136655 3367_ $$00$$2EndNote$$aJournal Article
000136655 520__ $$aStudies using metabolomic data have identified metabolites from several compound classes that are associated with disease-related lifestyle factors.In this study, we identified metabolic signatures reflecting lifestyle patterns and related them to the risk of hepatocellular carcinoma (HCC) in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.Within a nested case-control study of 147 incident HCC cases and 147 matched controls, partial least squares (PLS) analysis related 7 modified healthy lifestyle index (HLI) variables (diet, BMI, physical activity, lifetime alcohol, smoking, diabetes, and hepatitis) to 132 targeted serum-measured metabolites and a liver function score. The association between the resulting PLS scores and HCC risk was examined in multivariable conditional logistic regression models, where ORs and 95% CIs were computed.The lifestyle component's PLS score was negatively associated with lifetime alcohol, BMI, smoking, and diabetes, and positively associated with physical activity. Its metabolic counterpart was positively related to the metabolites sphingomyelin (SM) (OH) C14:1, C16:1, and C22:2, and negatively related to glutamate, hexoses, and the diacyl-phosphatidylcholine PC aaC32:1. The lifestyle and metabolomics components were inversely associated with HCC risk, with the ORs for a 1-SD increase in scores equal to 0.53 (95% CI: 0.38, 0.74) and 0.28 (0.18, 0.43), and the associated AUCs equal to 0.64 (0.57, 0.70) and 0.74 (0.69, 0.80), respectively.This study identified a metabolic signature reflecting a healthy lifestyle pattern which was inversely associated with HCC risk. The metabolic profile displayed a stronger association with HCC than did the modified HLI derived from questionnaire data. Measuring a specific panel of metabolites may identify strata of the population at higher risk for HCC and can add substantial discrimination compared with questionnaire data. This trial was registered at clinicaltrials.gov as NCT03356535.
000136655 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000136655 588__ $$aDataset connected to CrossRef, PubMed,
000136655 7001_ $$aGunter, Marc J$$b1
000136655 7001_ $$aThomas, Duncan C$$b2
000136655 7001_ $$aLeitzmann, Michael$$b3
000136655 7001_ $$aStepien, Magdalena$$b4
000136655 7001_ $$aChajès, Véronique$$b5
000136655 7001_ $$aPhilip, Thierry$$b6
000136655 7001_ $$aVineis, Paolo$$b7
000136655 7001_ $$aBamia, Christina$$b8
000136655 7001_ $$aBoutron-Ruault, Marie-Christine$$b9
000136655 7001_ $$aSandanger, Torkjel M$$b10
000136655 7001_ $$aMolinuevo, Amaia$$b11
000136655 7001_ $$aBoshuizen, Hendriek$$b12
000136655 7001_ $$aSundkvist, Anneli$$b13
000136655 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b14$$udkfz
000136655 7001_ $$aTravis, Ruth$$b15
000136655 7001_ $$aOvervad, Kim$$b16
000136655 7001_ $$aRiboli, Elio$$b17
000136655 7001_ $$aScalbert, Augustin$$b18
000136655 7001_ $$aJenab, Mazda$$b19
000136655 7001_ $$aViallon, Vivian$$b20
000136655 7001_ $$aFerrari, Pietro$$b21
000136655 773__ $$0PERI:(DE-600)1496439-9$$a10.1093/ajcn/nqy074$$gVol. 108, no. 1$$n1$$p117-126$$tThe American journal of clinical nutrition$$v108$$x1938-3207$$y2018
000136655 909CO $$ooai:inrepo02.dkfz.de:136655$$pVDB
000136655 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000136655 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000136655 9141_ $$y2018
000136655 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J CLIN NUTR : 2015
000136655 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136655 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136655 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136655 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136655 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000136655 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136655 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136655 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000136655 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000136655 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000136655 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAM J CLIN NUTR : 2015
000136655 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000136655 980__ $$ajournal
000136655 980__ $$aVDB
000136655 980__ $$aI:(DE-He78)C020-20160331
000136655 980__ $$aUNRESTRICTED