001     136726
005     20240229105055.0
024 7 _ |a 10.1001/jamaoncol.2018.2078
|2 doi
024 7 _ |a pmid:30003238
|2 pmid
024 7 _ |a 2374-2437
|2 ISSN
024 7 _ |a 2374-2445
|2 ISSN
024 7 _ |a altmetric:44964194
|2 altmetric
037 _ _ |a DKFZ-2018-01164
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Risk, Integrative Analysis of Lung Cancer Etiology and
|b 0
|e Collaboration Author
245 _ _ |a Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins.
260 _ _ |a Chicago, Ill.
|c 2018
|b American Medical Association
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536308653_14252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a There is an urgent need to improve lung cancer risk assessment because current screening criteria miss a large proportion of cases.To investigate whether a lung cancer risk prediction model based on a panel of selected circulating protein biomarkers can outperform a traditional risk prediction model and current US screening criteria.Prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort were used to develop a biomarker risk score based on 4 proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within 1 year after blood collection and 90 matched controls from 2 large European population-based cohorts, the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Northern Sweden Health and Disease Study (NSHDS).Model validity in discriminating between future lung cancer cases and controls. Discrimination estimates were weighted to reflect the background populations of EPIC and NSHDS validation studies (area under the receiver-operating characteristics curve [AUC], sensitivity, and specificity).In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (mean [SD] age, 57.7 [8.7] years; 68.6% men) from EPIC and NSHDS, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone (P = .003 for difference in AUC). At an overall specificity of 0.83, based on the US Preventive Services Task Force screening criteria, the sensitivity of the integrated risk prediction (biomarker) model was 0.63 compared with 0.43 for the smoking model. Conversely, at an overall sensitivity of 0.42, based on the US Preventive Services Task Force screening criteria, the integrated risk prediction model yielded a specificity of 0.95 compared with 0.86 for the smoking model.This study provided a proof of principle in showing that a panel of circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Guida, Florence
|b 1
700 1 _ |a Sun, Nan
|b 2
700 1 _ |a Bantis, Leonidas E
|b 3
700 1 _ |a Muller, David C
|b 4
700 1 _ |a Li, Peng
|b 5
700 1 _ |a Taguchi, Ayumu
|b 6
700 1 _ |a Dhillon, Dilsher
|b 7
700 1 _ |a Kundnani, Deepali L
|b 8
700 1 _ |a Patel, Nikul J
|b 9
700 1 _ |a Yan, Qingxiang
|b 10
700 1 _ |a Byrnes, Graham
|b 11
700 1 _ |a Moons, Karel G M
|b 12
700 1 _ |a Tjønneland, Anne
|b 13
700 1 _ |a Panico, Salvatore
|b 14
700 1 _ |a Agnoli, Claudia
|b 15
700 1 _ |a Vineis, Paolo
|b 16
700 1 _ |a Palli, Domenico
|b 17
700 1 _ |a Bueno-de-Mesquita, Bas
|b 18
700 1 _ |a Peeters, Petra H
|b 19
700 1 _ |a Agudo, Antonio
|b 20
700 1 _ |a Huerta, Jose M
|b 21
700 1 _ |a Dorronsoro, Miren
|b 22
700 1 _ |a Barranco, Miguel Rodriguez
|b 23
700 1 _ |a Ardanaz, Eva
|b 24
700 1 _ |a Travis, Ruth C
|b 25
700 1 _ |a Byrne, Karl Smith
|b 26
700 1 _ |a Boeing, Heiner
|b 27
700 1 _ |a Steffen, Annika
|b 28
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 29
700 1 _ |a Hüsing, Anika
|0 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
|b 30
|u dkfz
700 1 _ |a Trichopoulou, Antonia
|b 31
700 1 _ |a Lagiou, Pagona
|b 32
700 1 _ |a La Vecchia, Carlo
|b 33
700 1 _ |a Severi, Gianluca
|b 34
700 1 _ |a Boutron-Ruault, Marie-Christine
|b 35
700 1 _ |a Sandanger, Torkjel M
|b 36
700 1 _ |a Vainio, Elisabete Weiderpass
|b 37
700 1 _ |a Nøst, Therese H
|b 38
700 1 _ |a Tsilidis, Kostas
|b 39
700 1 _ |a Riboli, Elio
|b 40
700 1 _ |a Grankvist, Kjell
|b 41
700 1 _ |a Johansson, Mikael
|b 42
700 1 _ |a Goodman, Gary E
|b 43
700 1 _ |a Feng, Ziding
|b 44
700 1 _ |a Brennan, Paul
|b 45
700 1 _ |a Johansson, Mattias
|b 46
700 1 _ |a Hanash, Samir M
|b 47
773 _ _ |a 10.1001/jamaoncol.2018.2078
|g p. e182078 -
|0 PERI:(DE-600)2810928-4
|p e182078
|t JAMA oncology
|v N.N.
|y 2018
|x 2374-2437
909 C O |o oai:inrepo02.dkfz.de:136726
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21