000136767 001__ 136767
000136767 005__ 20240229105057.0
000136767 0247_ $$2doi$$a10.1002/advs.201700897
000136767 0247_ $$2pmid$$apmid:29876217
000136767 0247_ $$2pmc$$apmc:PMC5979778
000136767 0247_ $$2altmetric$$aaltmetric:43470553
000136767 037__ $$aDKFZ-2018-01205
000136767 041__ $$aeng
000136767 082__ $$a500
000136767 1001_ $$aMoscariello, Pierpaolo$$b0
000136767 245__ $$aBrain Delivery of Multifunctional Dendrimer Protein Bioconjugates.
000136767 260__ $$aWeinheim$$bWiley-VCH$$c2018
000136767 3367_ $$2DRIVER$$aarticle
000136767 3367_ $$2DataCite$$aOutput Types/Journal article
000136767 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536312837_14253
000136767 3367_ $$2BibTeX$$aARTICLE
000136767 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136767 3367_ $$00$$2EndNote$$aJournal Article
000136767 520__ $$aNeurological disorders are undoubtedly among the most alarming diseases humans might face. In treatment of neurological disorders, the blood-brain barrier (BBB) is a challenging obstacle preventing drug penetration into the brain. Advances in dendrimer chemistry for central nervous system (CNS) treatments are presented here. A poly(amido)amine (PAMAM) dendrimer bioconjugate with a streptavidin adapter for the attachment of dendrons or any biotinylated drug is constructed. In vitro studies on porcine or murine models and in vivo mouse studies are performed and reveal the permeation of dendronized streptavidin (DSA) into the CNS. The bioconjugate is taken up mainly by the caveolae pathway and transported across the BBB via transcytosis escaping from lysosomes. After transcytosis DSA are delivered to astrocytes and neurons. Furthermore, DSA offer high biocompatibility in vitro and in vivo. In summary, a new strategy for implementing therapeutic PAMAM function as well as drug delivery in neuropathology is presented here.
000136767 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000136767 588__ $$aDataset connected to CrossRef, PubMed,
000136767 7001_ $$aNg, David Y W$$b1
000136767 7001_ $$0P:(DE-He78)e40e066e33767cfd54fa29f1464e7ca5$$aJansen, Malin$$b2$$udkfz
000136767 7001_ $$aWeil, Tanja$$b3
000136767 7001_ $$aLuhmann, Heiko J$$b4
000136767 7001_ $$00000-0002-2664-0212$$aHedrich, Jana$$b5
000136767 773__ $$0PERI:(DE-600)2808093-2$$a10.1002/advs.201700897$$gVol. 5, no. 5, p. 1700897 -$$n5$$p1700897$$tAdvanced science$$v5$$x2198-3844$$y2018
000136767 909CO $$ooai:inrepo02.dkfz.de:136767$$pVDB
000136767 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e40e066e33767cfd54fa29f1464e7ca5$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000136767 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000136767 9141_ $$y2018
000136767 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV SCI : 2015
000136767 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136767 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000136767 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000136767 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000136767 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136767 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136767 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136767 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000136767 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV SCI : 2015
000136767 9201_ $$0I:(DE-He78)A240-20160331$$kA240$$lMolekulare Neurogenetik$$x0
000136767 980__ $$ajournal
000136767 980__ $$aVDB
000136767 980__ $$aI:(DE-He78)A240-20160331
000136767 980__ $$aUNRESTRICTED