001     136782
005     20240229105059.0
024 7 _ |a 10.1007/s00401-018-1877-0
|2 doi
024 7 _ |a pmid:29909548
|2 pmid
024 7 _ |a pmc:PMC6105278
|2 pmc
024 7 _ |a 0001-6322
|2 ISSN
024 7 _ |a 1432-0533
|2 ISSN
024 7 _ |a altmetric:43788895
|2 altmetric
037 _ _ |a DKFZ-2018-01220
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Pajtler, Kristian
|0 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
|b 0
|e First author
245 _ _ |a Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas.
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660114529_27718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wen, Ji
|b 1
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 2
|e First author
700 1 _ |a Lin, Tong
|b 3
700 1 _ |a Orisme, Wilda
|b 4
700 1 _ |a Tang, Bo
|b 5
700 1 _ |a Hübner, Jens-Martin
|0 P:(DE-He78)a8c698e0904394407c5261932915daa5
|b 6
700 1 _ |a Ramaswamy, Vijay
|b 7
700 1 _ |a Jia, Sujuan
|b 8
700 1 _ |a Dalton, James D
|b 9
700 1 _ |a Haupfear, Kelly
|b 10
700 1 _ |a Rogers, Hazel A
|b 11
700 1 _ |a Punchihewa, Chandanamali
|b 12
700 1 _ |a Lee, Ryan
|b 13
700 1 _ |a Easton, John
|b 14
700 1 _ |a Wu, Gang
|b 15
700 1 _ |a Ritzmann, Timothy A
|b 16
700 1 _ |a Chapman, Rebecca
|b 17
700 1 _ |a Chavez, Lukas
|0 P:(DE-He78)082dd3179733e3e716a58eb90f418a78
|b 18
700 1 _ |a Boop, Fredrick A
|b 19
700 1 _ |a Klimo, Paul
|b 20
700 1 _ |a Sabin, Noah D
|b 21
700 1 _ |a Ogg, Robert
|b 22
700 1 _ |a Mack, Stephen C
|b 23
700 1 _ |a Freibaum, Brian D
|b 24
700 1 _ |a Kim, Hong Joo
|b 25
700 1 _ |a Witt, Hendrik
|0 P:(DE-He78)046fd145f1008f83f6236580727bbc0f
|b 26
700 1 _ |a Jones, David
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 27
700 1 _ |a Vo, Baohan
|b 28
700 1 _ |a Gajjar, Amar
|b 29
700 1 _ |a Pounds, Stan
|b 30
700 1 _ |a Onar-Thomas, Arzu
|b 31
700 1 _ |a Roussel, Martine F
|b 32
700 1 _ |a Zhang, Jinghui
|b 33
700 1 _ |a Taylor, J Paul
|b 34
700 1 _ |a Merchant, Thomas E
|b 35
700 1 _ |a Grundy, Richard
|b 36
700 1 _ |a Tatevossian, Ruth G
|b 37
700 1 _ |a Taylor, Michael D
|b 38
700 1 _ |a Pfister, Stefan M
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Korshunov, Andrey
|0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
|b 40
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 41
|e Last author
700 1 _ |a Ellison, David W
|b 42
773 _ _ |a 10.1007/s00401-018-1877-0
|g Vol. 136, no. 2, p. 211 - 226
|0 PERI:(DE-600)1458410-4
|n 2
|p 211 - 226
|t Acta neuropathologica
|v 136
|y 2018
|x 1432-0533
909 C O |p VDB
|o oai:inrepo02.dkfz.de:136782
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a7c1bbac024fa232d9c6b78443328d9d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a8c698e0904394407c5261932915daa5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)082dd3179733e3e716a58eb90f418a78
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)046fd145f1008f83f6236580727bbc0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)551bb92841f634070997aa168d818492
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 40
|6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 41
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACTA NEUROPATHOL : 2015
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 1
920 1 _ |0 I:(DE-He78)G380-20160331
|k G380
|l KKE Neuropathologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)G380-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21