000136796 001__ 136796
000136796 005__ 20240229105100.0
000136796 0247_ $$2doi$$a10.1002/acm2.12359
000136796 0247_ $$2pmid$$apmid:29862644
000136796 0247_ $$2pmc$$apmc:PMC6036361
000136796 037__ $$aDKFZ-2018-01234
000136796 041__ $$aeng
000136796 082__ $$a530
000136796 1001_ $$0P:(DE-He78)20b46b82b477e76b30a00b0cc1257167$$aSaito, Nami$$b0$$eFirst author$$udkfz
000136796 245__ $$aCorrelation between intrafractional motion and dosimetric changes for prostate IMRT: Comparison of different adaptive strategies.
000136796 260__ $$aReston, Va.$$bACMP$$c2018
000136796 3367_ $$2DRIVER$$aarticle
000136796 3367_ $$2DataCite$$aOutput Types/Journal article
000136796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536239262_3592
000136796 3367_ $$2BibTeX$$aARTICLE
000136796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136796 3367_ $$00$$2EndNote$$aJournal Article
000136796 520__ $$aTo retrospectively analyze and estimate the dosimetric benefit of online and offline motion mitigation strategies for prostate IMRT.Intrafractional motion data of 21 prostate patients receiving intensity-modulated radiotherapy was acquired with an electromagnetic tracking system. Target trajectories of 734 fractions were analyzed per delivered multileaf-collimator segment in five motion metrics: three-dimensional displacement, distance from beam axis (DistToBeam), and three orthogonal components. Time-resolved dose calculations have been performed by shifting the target according to the sampled motion for the following scenarios: without adaptation, online-repositioning with a minimum threshold of 3 mm, and an offline approach using a modified field order applying horizontal before vertical beams. Change of D95 (targets) or V65 (organs at risk) relative to the static case, that is, ΔD95 or ΔV65, was extracted per fraction in percent. Correlation coefficients (CC) between the motion metrics and the dose metrics were extracted. Mean of patient-wise CC was used to evaluate the correlation of motion metric and dosimetric changes. Mean and standard deviation of the patient-wise correlation slopes (in %/mm) were extracted.For ΔD95 of the prostate, mean DistToBeam per fraction showed the highest correlation for all scenarios with a relative change of -0.6 ± 0.7%/mm without adaptation and -0.4 ± 0.5%/mm for the repositioning and field order strategies. For ΔV65 of the bladder and the rectum, superior-inferior and posterior-anterior motion components per fraction showed the highest correlation, respectively. The slope of bladder (rectum) was 14.6 ± 5.8 (15.1 ± 6.9) %/mm without adaptation, 14.0 ± 4.9 (14.5 ± 7.4) %/mm for repositioning with 3 mm, and 10.6 ± 2.5 (8.1 ± 4.6) %/mm for the field order approach.The correlation slope is a valuable concept to estimate dosimetric deviations from static plan quality directly based on the observed motion. For the prostate, both mitigation strategies showed comparable benefit. For organs at risk, the field order approach showed less sensitive response regarding motion and reduced interpatient variation.
000136796 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000136796 588__ $$aDataset connected to CrossRef, PubMed,
000136796 7001_ $$0P:(DE-He78)9fc741459ee669165a076eecdcbd07bf$$aSchmitt, Daniela$$b1$$udkfz
000136796 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b2$$eLast author$$udkfz
000136796 773__ $$0PERI:(DE-600)2010347-5$$a10.1002/acm2.12359$$gVol. 19, no. 4, p. 87 - 97$$n4$$p87 - 97$$tJournal of applied clinical medical physics$$v19$$x1526-9914$$y2018
000136796 909CO $$ooai:inrepo02.dkfz.de:136796$$pVDB
000136796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)20b46b82b477e76b30a00b0cc1257167$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000136796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9fc741459ee669165a076eecdcbd07bf$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000136796 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000136796 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000136796 9141_ $$y2018
000136796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CLIN MED PHYS : 2015
000136796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136796 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136796 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000136796 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000136796 980__ $$ajournal
000136796 980__ $$aVDB
000136796 980__ $$aI:(DE-He78)E040-20160331
000136796 980__ $$aUNRESTRICTED