000136844 001__ 136844
000136844 005__ 20240229105103.0
000136844 0247_ $$2doi$$a10.1016/j.radonc.2018.03.004
000136844 0247_ $$2pmid$$apmid:29598835
000136844 0247_ $$2ISSN$$a0167-8140
000136844 0247_ $$2ISSN$$a1879-0887
000136844 0247_ $$2altmetric$$aaltmetric:34883231
000136844 037__ $$aDKFZ-2018-01282
000136844 041__ $$aeng
000136844 082__ $$a610
000136844 1001_ $$0P:(DE-He78)740e39a4deb404c1afb2623fdb730543$$aZwanenburg, Alexander$$b0$$eFirst author
000136844 245__ $$aWhy validation of prognostic models matters?
000136844 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000136844 3367_ $$2DRIVER$$aarticle
000136844 3367_ $$2DataCite$$aOutput Types/Journal article
000136844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558086094_8585
000136844 3367_ $$2BibTeX$$aARTICLE
000136844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136844 3367_ $$00$$2EndNote$$aJournal Article
000136844 500__ $$aG947 NCT DD Liaison HZDR
000136844 520__ $$aPrognostic models are powerful tools for treatment personalisation. However, not all proposed models work well when validated using new data, despite impressive results being reported initially. Here, we will use a hands-on approach to highlight important aspects of prognostic modelling, as well as to demonstrate methods to generate generalisable models.
000136844 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000136844 588__ $$aDataset connected to CrossRef, PubMed,
000136844 7001_ $$0P:(DE-HGF)0$$aLöck, Steffen$$b1$$eLast author
000136844 773__ $$0PERI:(DE-600)1500707-8$$a10.1016/j.radonc.2018.03.004$$gVol. 127, no. 3, p. 370 - 373$$n3$$p370 - 373$$tRadiotherapy and oncology$$v127$$x0167-8140$$y2018
000136844 909CO $$ooai:inrepo02.dkfz.de:136844$$pVDB
000136844 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)740e39a4deb404c1afb2623fdb730543$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000136844 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000136844 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000136844 9141_ $$y2018
000136844 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000136844 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOTHER ONCOL : 2015
000136844 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136844 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136844 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136844 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000136844 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000136844 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136844 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000136844 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136844 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136844 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000136844 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000136844 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000136844 9201_ $$0I:(DE-He78)L301-20160331$$kL301$$lDKTK Dresden$$x0
000136844 9201_ $$0I:(DE-He78)G947-20160331$$kG947$$lNCT DD Liaison HZDR$$x1
000136844 980__ $$ajournal
000136844 980__ $$aVDB
000136844 980__ $$aI:(DE-He78)L301-20160331
000136844 980__ $$aI:(DE-He78)G947-20160331
000136844 980__ $$aUNRESTRICTED