001 | 136844 | ||
005 | 20240229105103.0 | ||
024 | 7 | _ | |a 10.1016/j.radonc.2018.03.004 |2 doi |
024 | 7 | _ | |a pmid:29598835 |2 pmid |
024 | 7 | _ | |a 0167-8140 |2 ISSN |
024 | 7 | _ | |a 1879-0887 |2 ISSN |
024 | 7 | _ | |a altmetric:34883231 |2 altmetric |
037 | _ | _ | |a DKFZ-2018-01282 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Zwanenburg, Alexander |0 P:(DE-He78)740e39a4deb404c1afb2623fdb730543 |b 0 |e First author |
245 | _ | _ | |a Why validation of prognostic models matters? |
260 | _ | _ | |a Amsterdam [u.a.] |c 2018 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1558086094_8585 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a G947 NCT DD Liaison HZDR |
520 | _ | _ | |a Prognostic models are powerful tools for treatment personalisation. However, not all proposed models work well when validated using new data, despite impressive results being reported initially. Here, we will use a hands-on approach to highlight important aspects of prognostic modelling, as well as to demonstrate methods to generate generalisable models. |
536 | _ | _ | |a 317 - Translational cancer research (POF3-317) |0 G:(DE-HGF)POF3-317 |c POF3-317 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Löck, Steffen |0 P:(DE-HGF)0 |b 1 |e Last author |
773 | _ | _ | |a 10.1016/j.radonc.2018.03.004 |g Vol. 127, no. 3, p. 370 - 373 |0 PERI:(DE-600)1500707-8 |n 3 |p 370 - 373 |t Radiotherapy and oncology |v 127 |y 2018 |x 0167-8140 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:136844 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)740e39a4deb404c1afb2623fdb730543 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-317 |2 G:(DE-HGF)POF3-300 |v Translational cancer research |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RADIOTHER ONCOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)L301-20160331 |k L301 |l DKTK Dresden |x 0 |
920 | 1 | _ | |0 I:(DE-He78)G947-20160331 |k G947 |l NCT DD Liaison HZDR |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)L301-20160331 |
980 | _ | _ | |a I:(DE-He78)G947-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|