001     136923
005     20240229105107.0
024 7 _ |a 10.1016/j.jclinepi.2018.07.016
|2 doi
024 7 _ |a pmid:30076979
|2 pmid
024 7 _ |a 0895-4356
|2 ISSN
024 7 _ |a 1878-5921
|2 ISSN
024 7 _ |a altmetric:46065202
|2 altmetric
037 _ _ |a DKFZ-2018-01360
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Qian, Jing
|0 P:(DE-He78)f96b350b208db77bd493ed176dd66a83
|b 0
|e First author
245 _ _ |a Biomarker discovery study of inflammatory proteins for colorectal cancer early detection demonstrated importance of screening setting validation.
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550750221_27365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Most studies identifying inflammatory markers for early detection of colorectal cancer (CRC) were conducted using clinically manifest cases. We aimed to identify circulating inflammatory biomarkers for early detection of CRC and validate them in both a clinical setting and a true screening setting.A total of 92 inflammatory proteins were quantified in baseline plasma samples from individuals clinically diagnosed with CRC and neoplasm-free controls matched on age and sex (training set). A multi-marker panel was selected and evaluated in samples from another clinical setting (validation set C) and a screening setting (validation set S).In the training set (n=330) a 5-biomarker signature was selected that provided an AUC of 0.85 and 60.9% sensitivity to detect CRC at 90% specificity. When this algorithm was applied to validation set C (n=318), the AUC (0.80) and sensitivity (49.5%) at 90% specificity for CRC diagnosis were only slightly lower than those in the training set. In contrast, the diagnostic performance of the algorithm in validation set S (n=126) from a true screening setting was much poorer, with an AUC of 0.59 and a sensitivity of 28.6% at 90% specificity.An inflammation-related protein panel with apparently good diagnostic properties for CRC detection was identified and confirmed in an independent clinical validation set. However, the biomarker combination performed substantially worse in a validation sample from a true screening setting. Our results underline the importance of validation in screening settings subsequently to novel signature discovery for cancer early detection.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Tikk, Kaja
|0 P:(DE-He78)eabbefb821cdb73961a5adf967330b62
|b 1
700 1 _ |a Werner, Simone
|0 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086
|b 2
|u dkfz
700 1 _ |a Balavarca, Yesilda
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Saadati, Maral
|0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
|b 4
|u dkfz
700 1 _ |a Hechtner, Marlene
|0 P:(DE-He78)18a87b68d272401b45448c2af7bb1ea0
|b 5
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
|e Last author
773 _ _ |a 10.1016/j.jclinepi.2018.07.016
|g Vol. 104, p. 24 - 34
|0 PERI:(DE-600)1500490-9
|p 24 - 34
|t Journal of clinical epidemiology
|v 104
|y 2018
|x 0895-4356
909 C O |p VDB
|o oai:inrepo02.dkfz.de:136923
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)f96b350b208db77bd493ed176dd66a83
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)eabbefb821cdb73961a5adf967330b62
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)18a87b68d272401b45448c2af7bb1ea0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLIN EPIDEMIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)G110-20160331
|k G110
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 2
920 1 _ |0 I:(DE-He78)L501-20160331
|k L501
|l DKTK Frankfurt
|x 3
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)G110-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)L501-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21