Home > Publications database > Biomarker discovery study of inflammatory proteins for colorectal cancer early detection demonstrated importance of screening setting validation. > print |
001 | 136923 | ||
005 | 20240229105107.0 | ||
024 | 7 | _ | |a 10.1016/j.jclinepi.2018.07.016 |2 doi |
024 | 7 | _ | |a pmid:30076979 |2 pmid |
024 | 7 | _ | |a 0895-4356 |2 ISSN |
024 | 7 | _ | |a 1878-5921 |2 ISSN |
024 | 7 | _ | |a altmetric:46065202 |2 altmetric |
037 | _ | _ | |a DKFZ-2018-01360 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Qian, Jing |0 P:(DE-He78)f96b350b208db77bd493ed176dd66a83 |b 0 |e First author |
245 | _ | _ | |a Biomarker discovery study of inflammatory proteins for colorectal cancer early detection demonstrated importance of screening setting validation. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2018 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1550750221_27365 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Most studies identifying inflammatory markers for early detection of colorectal cancer (CRC) were conducted using clinically manifest cases. We aimed to identify circulating inflammatory biomarkers for early detection of CRC and validate them in both a clinical setting and a true screening setting.A total of 92 inflammatory proteins were quantified in baseline plasma samples from individuals clinically diagnosed with CRC and neoplasm-free controls matched on age and sex (training set). A multi-marker panel was selected and evaluated in samples from another clinical setting (validation set C) and a screening setting (validation set S).In the training set (n=330) a 5-biomarker signature was selected that provided an AUC of 0.85 and 60.9% sensitivity to detect CRC at 90% specificity. When this algorithm was applied to validation set C (n=318), the AUC (0.80) and sensitivity (49.5%) at 90% specificity for CRC diagnosis were only slightly lower than those in the training set. In contrast, the diagnostic performance of the algorithm in validation set S (n=126) from a true screening setting was much poorer, with an AUC of 0.59 and a sensitivity of 28.6% at 90% specificity.An inflammation-related protein panel with apparently good diagnostic properties for CRC detection was identified and confirmed in an independent clinical validation set. However, the biomarker combination performed substantially worse in a validation sample from a true screening setting. Our results underline the importance of validation in screening settings subsequently to novel signature discovery for cancer early detection. |
536 | _ | _ | |a 313 - Cancer risk factors and prevention (POF3-313) |0 G:(DE-HGF)POF3-313 |c POF3-313 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Tikk, Kaja |0 P:(DE-He78)eabbefb821cdb73961a5adf967330b62 |b 1 |
700 | 1 | _ | |a Werner, Simone |0 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086 |b 2 |u dkfz |
700 | 1 | _ | |a Balavarca, Yesilda |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Saadati, Maral |0 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74 |b 4 |u dkfz |
700 | 1 | _ | |a Hechtner, Marlene |0 P:(DE-He78)18a87b68d272401b45448c2af7bb1ea0 |b 5 |u dkfz |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 6 |e Last author |
773 | _ | _ | |a 10.1016/j.jclinepi.2018.07.016 |g Vol. 104, p. 24 - 34 |0 PERI:(DE-600)1500490-9 |p 24 - 34 |t Journal of clinical epidemiology |v 104 |y 2018 |x 0895-4356 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:136923 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)f96b350b208db77bd493ed176dd66a83 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)eabbefb821cdb73961a5adf967330b62 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)6c57e61dc44a62313e7075a0cefbb086 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)609d3f1c1420bf59b2332eeab889cb74 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)18a87b68d272401b45448c2af7bb1ea0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
913 | 1 | _ | |a DE-HGF |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |2 G:(DE-HGF)POF3-300 |v Cancer risk factors and prevention |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Gesundheit |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CLIN EPIDEMIOL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l Klinische Epidemiologie und Alternsforschung |x 0 |
920 | 1 | _ | |0 I:(DE-He78)G110-20160331 |k G110 |l Präventive Onkologie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l Biostatistik |x 2 |
920 | 1 | _ | |0 I:(DE-He78)L501-20160331 |k L501 |l DKTK Frankfurt |x 3 |
920 | 1 | _ | |0 I:(DE-He78)L101-20160331 |k L101 |l DKTK Heidelberg |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)G110-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)L501-20160331 |
980 | _ | _ | |a I:(DE-He78)L101-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|