000137556 001__ 137556
000137556 005__ 20240229105110.0
000137556 0247_ $$2doi$$a10.1002/rcs.1945
000137556 0247_ $$2pmid$$apmid:30084164
000137556 0247_ $$2ISSN$$a1478-5951
000137556 0247_ $$2ISSN$$a1478-596X
000137556 037__ $$aDKFZ-2018-01436
000137556 041__ $$aeng
000137556 082__ $$a610
000137556 1001_ $$aVetter, Sven Yves$$b0
000137556 245__ $$aVirtual guidance versus virtual implant planning system in the treatment of distal radius fractures.
000137556 260__ $$aChichester$$bWiley$$c2018
000137556 3367_ $$2DRIVER$$aarticle
000137556 3367_ $$2DataCite$$aOutput Types/Journal article
000137556 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1537183644_17395
000137556 3367_ $$2BibTeX$$aARTICLE
000137556 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137556 3367_ $$00$$2EndNote$$aJournal Article
000137556 520__ $$aA virtual guidance framework is used to assist the conventional method of virtual implant planning system (VIPS). The study null hypothesis was that its screw placement accuracy is equal to that of conventional VIPS.In 34 distal radius sawbone models, 3D implant planning was performed. A camera attached to the surgical drill was used to support screw positioning. Differences of angles/tip distances between planned and placed screws were identified in intraoperative cone beam Computer tomography (CT) and compared with already existing data from 22 patients treated by conventional VIPS.The virtual guidance group showed tip distances of 1.02 ± 0.56 mm, azimuth of 3.69° ± 4.34°, and inclination of 1.75° ± 1.37°, whereas the VIPS group showed tip distances of 2.23 ± 0.99 mm (P < 0.001), azimuth of 23.17° ± 33.50° (P < 0.001), and inclination angle of 4.18° ± 6.29° (P = 0.001).The results reveal that using a guidance framework leads to a higher accuracy in screw placement compared with the conventional VIPS itself.
000137556 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000137556 588__ $$aDataset connected to CrossRef, PubMed,
000137556 7001_ $$0P:(DE-HGF)0$$aMagaraggia, Jessica$$b1
000137556 7001_ $$aBeisemann, Nils$$b2
000137556 7001_ $$aSchnetzke, Marc$$b3
000137556 7001_ $$aKeil, Holger$$b4
000137556 7001_ $$aFranke, Jochen$$b5
000137556 7001_ $$aGrützner, Paul Alfred$$b6
000137556 7001_ $$00000-0003-4005-9923$$aSwartman, Benedict$$b7
000137556 773__ $$0PERI:(DE-600)2156187-4$$a10.1002/rcs.1945$$gVol. 14, no. 5, p. e1945 -$$n5$$pe1945$$tThe international journal of medical robotics and computer assisted surgery$$v14$$x1478-5951$$y2018
000137556 909CO $$ooai:inrepo02.dkfz.de:137556$$pVDB
000137556 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000137556 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000137556 9141_ $$y2018
000137556 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137556 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137556 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MED ROBOT COMP : 2015
000137556 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137556 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137556 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137556 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000137556 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000137556 9201_ $$0I:(DE-He78)E132-20160331$$kE132$$lMedizinische Bildverarbeitung$$x0
000137556 980__ $$ajournal
000137556 980__ $$aVDB
000137556 980__ $$aI:(DE-He78)E132-20160331
000137556 980__ $$aUNRESTRICTED