001     137556
005     20240229105110.0
024 7 _ |a 10.1002/rcs.1945
|2 doi
024 7 _ |a pmid:30084164
|2 pmid
024 7 _ |a 1478-5951
|2 ISSN
024 7 _ |a 1478-596X
|2 ISSN
037 _ _ |a DKFZ-2018-01436
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Vetter, Sven Yves
|b 0
245 _ _ |a Virtual guidance versus virtual implant planning system in the treatment of distal radius fractures.
260 _ _ |a Chichester
|c 2018
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1537183644_17395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A virtual guidance framework is used to assist the conventional method of virtual implant planning system (VIPS). The study null hypothesis was that its screw placement accuracy is equal to that of conventional VIPS.In 34 distal radius sawbone models, 3D implant planning was performed. A camera attached to the surgical drill was used to support screw positioning. Differences of angles/tip distances between planned and placed screws were identified in intraoperative cone beam Computer tomography (CT) and compared with already existing data from 22 patients treated by conventional VIPS.The virtual guidance group showed tip distances of 1.02 ± 0.56 mm, azimuth of 3.69° ± 4.34°, and inclination of 1.75° ± 1.37°, whereas the VIPS group showed tip distances of 2.23 ± 0.99 mm (P < 0.001), azimuth of 23.17° ± 33.50° (P < 0.001), and inclination angle of 4.18° ± 6.29° (P = 0.001).The results reveal that using a guidance framework leads to a higher accuracy in screw placement compared with the conventional VIPS itself.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Magaraggia, Jessica
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beisemann, Nils
|b 2
700 1 _ |a Schnetzke, Marc
|b 3
700 1 _ |a Keil, Holger
|b 4
700 1 _ |a Franke, Jochen
|b 5
700 1 _ |a Grützner, Paul Alfred
|b 6
700 1 _ |a Swartman, Benedict
|0 0000-0003-4005-9923
|b 7
773 _ _ |a 10.1002/rcs.1945
|g Vol. 14, no. 5, p. e1945 -
|0 PERI:(DE-600)2156187-4
|n 5
|p e1945
|t The international journal of medical robotics and computer assisted surgery
|v 14
|y 2018
|x 1478-5951
909 C O |o oai:inrepo02.dkfz.de:137556
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MED ROBOT COMP : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21