000137578 001__ 137578
000137578 005__ 20240229105111.0
000137578 0247_ $$2doi$$a10.1093/aje/kwy177
000137578 0247_ $$2pmid$$apmid:30188971
000137578 0247_ $$2ISSN$$a0002-9262
000137578 0247_ $$2ISSN$$a1476-6256
000137578 0247_ $$2altmetric$$aaltmetric:53837345
000137578 037__ $$aDKFZ-2018-01458
000137578 041__ $$aeng
000137578 082__ $$a610
000137578 1001_ $$aDai, James Y$$b0
000137578 245__ $$aDiagnostics of Pleiotropy in Mendelian Randomization Studies: Global and Individual Tests for Direct Effects.
000137578 260__ $$aOxford$$bOxford Univ. Press$$c2018
000137578 3367_ $$2DRIVER$$aarticle
000137578 3367_ $$2DataCite$$aOutput Types/Journal article
000137578 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550144918_26422
000137578 3367_ $$2BibTeX$$aARTICLE
000137578 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137578 3367_ $$00$$2EndNote$$aJournal Article
000137578 520__ $$aDiagnosing pleiotropy is critical for assessing the validity of Mendelian randomization (MR) analyses. The popular MR-Egger method evaluates whether there is evidence of bias-generating pleiotropy among a set of candidate genetic instrumental variables. In this article, we propose GLIDE, GLobal and Individual tests for Direct Effects, a statistical method to systematically evaluate pleiotropy among the set of genetic variants, e.g., single nucleotide polymorphisms (SNPs), used for MR. As a global test, simulation experiments suggest that GLIDE is nearly uniformly more powerful than the MR-Egger method. As a sensitivity analysis, GLIDE is capable of detecting outliers in individual variant-level pleiotropy, in order to obtain a refined set of genetic instrumental variables. We used GLIDE to analyze both body-mass index and height for risk of colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium. Among the body mass index associated SNPs and the height associated SNPs, several individual variants showed evidence of pleiotropy. Removal of these potentially pleiotropic SNPs resulted in attenuation of respective estimates of the causal effects. In summary, the proposed GLIDE method is useful for sensitivity analyses and improves the validity of MR.
000137578 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000137578 588__ $$aDataset connected to CrossRef, PubMed,
000137578 7001_ $$aPeters, Ulrike$$b1
000137578 7001_ $$aWang, Xiaoyu$$b2
000137578 7001_ $$aKocarnik, Jonathan$$b3
000137578 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b4$$udkfz
000137578 7001_ $$aSlattery, Martha L$$b5
000137578 7001_ $$aChan, Andrew$$b6
000137578 7001_ $$aLemire, Mathieu$$b7
000137578 7001_ $$aBerndt, Sonja I$$b8
000137578 7001_ $$aCasey, Graham$$b9
000137578 7001_ $$aSong, Mingyang$$b10
000137578 7001_ $$aJenkins, Mark A$$b11
000137578 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b12$$udkfz
000137578 7001_ $$aThrift, Aaron P$$b13
000137578 7001_ $$aWhite, Emily$$b14
000137578 7001_ $$aHsu, Li$$b15
000137578 773__ $$0PERI:(DE-600)2030043-8$$a10.1093/aje/kwy177$$p2672-2680$$tAmerican journal of epidemiology$$v187$$x1476-6256$$y2018
000137578 909CO $$ooai:inrepo02.dkfz.de:137578$$pVDB
000137578 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000137578 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000137578 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000137578 9141_ $$y2018
000137578 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000137578 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000137578 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J EPIDEMIOL : 2015
000137578 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137578 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137578 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137578 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000137578 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000137578 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137578 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000137578 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137578 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137578 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000137578 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000137578 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137578 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAM J EPIDEMIOL : 2015
000137578 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lKlinische Epidemiologie und Alternsforschung$$x0
000137578 9201_ $$0I:(DE-He78)G110-20160331$$kG110$$lPräventive Onkologie$$x1
000137578 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x2
000137578 980__ $$ajournal
000137578 980__ $$aVDB
000137578 980__ $$aI:(DE-He78)C070-20160331
000137578 980__ $$aI:(DE-He78)G110-20160331
000137578 980__ $$aI:(DE-He78)C020-20160331
000137578 980__ $$aUNRESTRICTED