000137579 001__ 137579
000137579 005__ 20240229105111.0
000137579 0247_ $$2doi$$a10.1038/s41419-018-0935-9
000137579 0247_ $$2pmid$$apmid:30185788
000137579 0247_ $$2pmc$$apmc:PMC6125596
000137579 0247_ $$2altmetric$$aaltmetric:47931032
000137579 037__ $$aDKFZ-2018-01459
000137579 041__ $$aeng
000137579 082__ $$a570
000137579 1001_ $$aFaletti, Laura$$b0
000137579 245__ $$aTNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation.
000137579 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2018
000137579 3367_ $$2DRIVER$$aarticle
000137579 3367_ $$2DataCite$$aOutput Types/Journal article
000137579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659693541_13808
000137579 3367_ $$2BibTeX$$aARTICLE
000137579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137579 3367_ $$00$$2EndNote$$aJournal Article
000137579 520__ $$aAlthough it is well established that TNFα contributes to hepatitis, liver failure and associated hepatocarcinogenesis via the regulation of inflammation, its pro-apoptotic role in the liver has remained enigmatic. On its own, TNFα is unable to trigger apoptosis. However, when combined with the transcriptional inhibitor GaLN, it can cause hepatocyte apoptosis and liver failure in mice. Moreover, along with others, we have shown that TNFα is capable of sensitizing cells to FasL- or drug-induced cell death via c-Jun N-terminal kinase (JNK) activation and phosphorylation/activation of the BH3-only protein Bim. In this context, TNFα could exacerbate hepatocyte cell death during simultaneous inflammatory and T-cell-mediated immune responses in the liver. Here we show that TNFα sensitizes primary hepatocytes, established hepatocyte cell lines and mouse embryo fibroblasts to FasL-induced apoptosis by the transcriptional induction and higher surface expression of Fas via the NFκB pathway. Genetic deletion, diminished expression or dominant-negative inhibition of the NFκB subunit p65 resulted in lower Fas expression and inhibited TNFα-induced Fas upregulation and sensitization to FasL-induced cell death. By hydrodynamic injection of p65 shRNA into the tail vein of mice, we confirm that Fas upregulation by TNFα is also NFκB-mediated in the liver. In conclusion, TNFα sensitization of FasL-induced apoptosis in the liver proceeds via two parallel signaling pathways, activation of JNK and Bim phosphorylation and NFκB-mediated Fas upregulation.
000137579 536__ $$0G:(DE-HGF)POF3-316$$a316 - Infections and cancer (POF3-316)$$cPOF3-316$$fPOF III$$x0
000137579 588__ $$aDataset connected to CrossRef, PubMed,
000137579 7001_ $$00000-0002-0445-1445$$aPeintner, Lukas$$b1
000137579 7001_ $$aNeumann, Simon$$b2
000137579 7001_ $$aSandler, Sandra$$b3
000137579 7001_ $$aGrabinger, Thomas$$b4
000137579 7001_ $$aMac Nelly, Sabine$$b5
000137579 7001_ $$aMerfort, Irmgard$$b6
000137579 7001_ $$aHuang, Chun-Hao$$b7
000137579 7001_ $$0P:(DE-He78)ceccc9aed8c6e89c00795bce1f1d83a3$$aTschaharganeh, Darjus Felix$$b8$$udkfz
000137579 7001_ $$0P:(DE-He78)e9f808a3a86f002da511eb9ae11f076f$$aKang, Tae-Won$$b9$$udkfz
000137579 7001_ $$0P:(DE-HGF)0$$aHeinzmann, Florian$$b10
000137579 7001_ $$0P:(DE-HGF)0$$aD'Artista, Luana$$b11
000137579 7001_ $$00000-0002-2504-1517$$aMaurer, Ulrich$$b12
000137579 7001_ $$aBrunner, Thomas$$b13
000137579 7001_ $$aLowe, Scott$$b14
000137579 7001_ $$0P:(DE-He78)1ba2900406378e069d32db376c7818db$$aZender, Lars$$b15$$udkfz
000137579 7001_ $$aBorner, Christoph$$b16
000137579 773__ $$0PERI:(DE-600)2541626-1$$a10.1038/s41419-018-0935-9$$gVol. 9, no. 9, p. 909$$n9$$p909$$tCell death & disease$$v9$$x2041-4889$$y2018
000137579 909CO $$ooai:inrepo02.dkfz.de:137579$$pVDB
000137579 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ceccc9aed8c6e89c00795bce1f1d83a3$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000137579 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e9f808a3a86f002da511eb9ae11f076f$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000137579 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000137579 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000137579 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1ba2900406378e069d32db376c7818db$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000137579 9131_ $$0G:(DE-HGF)POF3-316$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vInfections and cancer$$x0
000137579 9141_ $$y2018
000137579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL DEATH DIS : 2015
000137579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137579 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137579 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000137579 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000137579 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000137579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137579 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137579 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000137579 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137579 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL DEATH DIS : 2015
000137579 9201_ $$0I:(DE-He78)F190-20160331$$kF190$$lF190 Cell Plasticity and Epigenetic Remodeling$$x0
000137579 9201_ $$0I:(DE-He78)V076-20160331$$kV076$$lTranslationale Gastrointestinale Onkologie$$x1
000137579 9201_ $$0I:(DE-He78)L801-20160331$$kL801$$lDKTK Tübingen$$x2
000137579 980__ $$ajournal
000137579 980__ $$aVDB
000137579 980__ $$aI:(DE-He78)F190-20160331
000137579 980__ $$aI:(DE-He78)V076-20160331
000137579 980__ $$aI:(DE-He78)L801-20160331
000137579 980__ $$aUNRESTRICTED