001     137610
005     20240229105112.0
024 7 _ |a 10.2967/jnumed.117.200220
|2 doi
024 7 _ |a pmid:29371410
|2 pmid
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 2159-662X
|2 ISSN
024 7 _ |a altmetric:32305943
|2 altmetric
037 _ _ |a DKFZ-2018-01490
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Rathke, Hendrik
|b 0
245 _ _ |a Intraindividual Comparison of 99mTc-Methylene Diphosphonate and Prostate-Specific Membrane Antigen Ligand 99mTc-MIP-1427 in Patients with Osseous Metastasized Prostate Cancer.
260 _ _ |a New York, NY
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1538461028_12288
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The objective of this study was to evaluate the rate of detection of bone metastases obtained with the prostate-specific membrane antigen (PSMA)-targeting tracer 99mTc-MIP-1427, as opposed to conventional bone scanning with 99mTc-methylene diphosphonate (99mTc-MDP), in a collective of patients with known advanced-stage osseous metastasized prostate cancer. Methods: Twenty-one patients with known metastatic disease were staged with both conventional bone scanning and PSMA ligand scintigraphy within a time frame of less than 10 d. Imaging included planar whole-body scanning and SPECT or SPECT/CT with 2 bed positions 3 h after injection of either 500-750 MBq of 99mTc-MIP-1427 or 600-750 MBq of 99mTc-MDP. Lesions were scored as typical tumor, equivocal (benign/malignant), or normal within a standard reporting schema divided into defined anatomic regions. Masked and consensus readings were performed with sequential unmasking: planar scans first, then SPECT/CT, the best evaluable comparator (including MRI), PET/CT, and follow-up examinations. Results: Eleven patients had PSMA-positive visceral metastases that were predictably not diagnosed with conventional bone scanning. However, SPECT/CT was required to distinguish between soft-tissue uptake and overlapping bone. Four patients had extensive 99mTc-MDP-negative bone marrow lesions. Seven patients had superscan characteristics on bone scans; in contrast, the extent of red marrow involvement was more evident on PSMA scans. Only 3 patients had equivalent results on bone scans and PSMA scans. In 16 patients, more suspect lesions were detected with PSMA scanning than with bone scanning. In 2 patients (10%), a PSMA-negative tumor phenotype was present. Conclusion: PSMA scanning provided a clear advantage over bone scanning by reducing the number of equivocal findings in most patients. SPECT/CT was pivotal for differentiating bone metastases from extraosseous tumor lesions.
536 _ _ |a 319H - Addenda (POF3-319H)
|0 G:(DE-HGF)POF3-319H
|c POF3-319H
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Afshar-Oromieh, Ali
|b 1
700 1 _ |a Giesel, Frederik Lars
|b 2
700 1 _ |a Kremer, Christophe
|b 3
700 1 _ |a Flechsig, Paul
|b 4
700 1 _ |a Haufe, Sabine
|b 5
700 1 _ |a Mier, Walter
|b 6
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 7
|u dkfz
700 1 _ |a De Bucourt, Maximilian
|b 8
700 1 _ |a Armor, Thomas
|b 9
700 1 _ |a Babich, John W
|b 10
700 1 _ |a Haberkorn, Uwe
|0 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
|b 11
|u dkfz
700 1 _ |a Kratochwil, Clemens
|b 12
773 _ _ |a 10.2967/jnumed.117.200220
|g Vol. 59, no. 9, p. 1373 - 1379
|0 PERI:(DE-600)2040222-3
|n 9
|p 1373 - 1379
|t Journal of nuclear medicine
|v 59
|y 2018
|x 2159-662X
909 C O |o oai:inrepo02.dkfz.de:137610
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)13a0afba029f5f64dc18b25ef7499558
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-319H
|2 G:(DE-HGF)POF3-300
|v Addenda
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2015
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l Biostatistik
|x 0
920 1 _ |0 I:(DE-He78)E060-20160331
|k E060
|l KKE Nuklearmedizin
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21