000137658 001__ 137658
000137658 005__ 20240229105114.0
000137658 0247_ $$2doi$$a10.3791/57311
000137658 0247_ $$2pmid$$apmid:29939173
000137658 0247_ $$2altmetric$$aaltmetric:44154502
000137658 037__ $$aDKFZ-2018-01537
000137658 041__ $$aeng
000137658 082__ $$a570
000137658 1001_ $$0P:(DE-He78)a9542bb104fe3f4d562e1d275e03f5ba$$aFeng, Weijun$$b0$$eFirst author
000137658 245__ $$aCRISPR-mediated Loss of Function Analysis in Cerebellar Granule Cells Using In Utero Electroporation-based Gene Transfer.
000137658 260__ $$a[S.l.]$$c2018
000137658 3367_ $$2DRIVER$$aarticle
000137658 3367_ $$2DataCite$$aOutput Types/Journal article
000137658 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680173127_7808
000137658 3367_ $$2BibTeX$$aARTICLE
000137658 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137658 3367_ $$00$$2EndNote$$aJournal Article
000137658 500__ $$aDKFZ-ZMBH-Allianz  / 2018 Jun 9;(136).
000137658 520__ $$aBrain malformation is often caused by genetic mutations. Deciphering the mutations in patient-derived tissues has identified potential causative factors of the diseases. To validate the contribution of a dysfunction of the mutated genes to disease development, the generation of animal models carrying the mutations is one obvious approach. While germline genetically engineered mouse models (GEMMs) are popular biological tools and exhibit reproducible results, it is restricted by time and costs. Meanwhile, non-germline GEMMs often enable exploring gene function in a more feasible manner. Since some brain diseases (e.g., brain tumors) appear to result from somatic but not germline mutations, non-germline chimeric mouse models, in which normal and abnormal cells coexist, could be helpful for disease-relevant analysis. In this study, we report a method for the induction of CRISPR-mediated somatic mutations in the cerebellum. Specifically, we utilized conditional knock-in mice, in which Cas9 and GFP are chronically activated by the CAG (CMV enhancer/chicken ß-actin) promoter after Cre-mediated recombination of the genome. The self-designed single-guide RNAs (sgRNAs) and the Cre recombinase sequence, both encoded in a single plasmid construct, were delivered into cerebellar stem/progenitor cells at an embryonic stage using in utero electroporation. Consequently, transfected cells and their daughter cells were labeled with green fluorescent protein (GFP), thus facilitating further phenotypic analyses. Hence, this method is not only showing electroporation-based gene delivery into embryonic cerebellar cells but also proposing a novel quantitative approach to assess CRISPR-mediated loss-of-function phenotypes.
000137658 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000137658 588__ $$aDataset connected to CrossRef, PubMed,
000137658 7001_ $$0P:(DE-He78)032b493e95c95b309cdf2b074c40e243$$aHerbst, Lena$$b1$$eFirst author
000137658 7001_ $$0P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aLichter, Peter$$b2
000137658 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan$$b3
000137658 7001_ $$0P:(DE-He78)76aeb2431f7458c9261e69c5420390c6$$aLiu, Hai-Kun$$b4$$udkfz
000137658 7001_ $$0P:(DE-He78)0ac2bd1a9fb1823a351ee4434d80808b$$aKawauchi, Daisuke$$b5$$eLast author
000137658 773__ $$0PERI:(DE-600)2259946-0$$a10.3791/57311$$gno. 136, p. 57311$$n136$$p57311$$tJournal of visualized experiments$$v9$$x1940-087X$$y2018
000137658 909CO $$ooai:inrepo02.dkfz.de:137658$$pVDB
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a9542bb104fe3f4d562e1d275e03f5ba$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)032b493e95c95b309cdf2b074c40e243$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)76aeb2431f7458c9261e69c5420390c6$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000137658 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0ac2bd1a9fb1823a351ee4434d80808b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000137658 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000137658 9141_ $$y2018
000137658 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJOVE-J VIS EXP : 2015
000137658 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137658 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137658 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137658 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137658 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137658 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137658 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137658 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000137658 9201_ $$0I:(DE-He78)A240-20160331$$kA240$$lA240 Molekulare Neurogenetik$$x0
000137658 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x1
000137658 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000137658 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x3
000137658 980__ $$ajournal
000137658 980__ $$aVDB
000137658 980__ $$aI:(DE-He78)A240-20160331
000137658 980__ $$aI:(DE-He78)B060-20160331
000137658 980__ $$aI:(DE-He78)L101-20160331
000137658 980__ $$aI:(DE-He78)B062-20160331
000137658 980__ $$aUNRESTRICTED