001     137658
005     20240229105114.0
024 7 _ |a 10.3791/57311
|2 doi
024 7 _ |a pmid:29939173
|2 pmid
024 7 _ |a altmetric:44154502
|2 altmetric
037 _ _ |a DKFZ-2018-01537
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Feng, Weijun
|0 P:(DE-He78)a9542bb104fe3f4d562e1d275e03f5ba
|b 0
|e First author
245 _ _ |a CRISPR-mediated Loss of Function Analysis in Cerebellar Granule Cells Using In Utero Electroporation-based Gene Transfer.
260 _ _ |a [S.l.]
|c 2018
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680173127_7808
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH-Allianz / 2018 Jun 9;(136).
520 _ _ |a Brain malformation is often caused by genetic mutations. Deciphering the mutations in patient-derived tissues has identified potential causative factors of the diseases. To validate the contribution of a dysfunction of the mutated genes to disease development, the generation of animal models carrying the mutations is one obvious approach. While germline genetically engineered mouse models (GEMMs) are popular biological tools and exhibit reproducible results, it is restricted by time and costs. Meanwhile, non-germline GEMMs often enable exploring gene function in a more feasible manner. Since some brain diseases (e.g., brain tumors) appear to result from somatic but not germline mutations, non-germline chimeric mouse models, in which normal and abnormal cells coexist, could be helpful for disease-relevant analysis. In this study, we report a method for the induction of CRISPR-mediated somatic mutations in the cerebellum. Specifically, we utilized conditional knock-in mice, in which Cas9 and GFP are chronically activated by the CAG (CMV enhancer/chicken ß-actin) promoter after Cre-mediated recombination of the genome. The self-designed single-guide RNAs (sgRNAs) and the Cre recombinase sequence, both encoded in a single plasmid construct, were delivered into cerebellar stem/progenitor cells at an embryonic stage using in utero electroporation. Consequently, transfected cells and their daughter cells were labeled with green fluorescent protein (GFP), thus facilitating further phenotypic analyses. Hence, this method is not only showing electroporation-based gene delivery into embryonic cerebellar cells but also proposing a novel quantitative approach to assess CRISPR-mediated loss-of-function phenotypes.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Herbst, Lena
|0 P:(DE-He78)032b493e95c95b309cdf2b074c40e243
|b 1
|e First author
700 1 _ |a Lichter, Peter
|0 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
|b 2
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 3
700 1 _ |a Liu, Hai-Kun
|0 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
|b 4
|u dkfz
700 1 _ |a Kawauchi, Daisuke
|0 P:(DE-He78)0ac2bd1a9fb1823a351ee4434d80808b
|b 5
|e Last author
773 _ _ |a 10.3791/57311
|g no. 136, p. 57311
|0 PERI:(DE-600)2259946-0
|n 136
|p 57311
|t Journal of visualized experiments
|v 9
|y 2018
|x 1940-087X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:137658
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a9542bb104fe3f4d562e1d275e03f5ba
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)032b493e95c95b309cdf2b074c40e243
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e13b4363c5fe858044ef8a39c02c870c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)0ac2bd1a9fb1823a351ee4434d80808b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JOVE-J VIS EXP : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)A240-20160331
|k A240
|l A240 Molekulare Neurogenetik
|x 0
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A240-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21