001     140844
005     20240229105117.0
024 7 _ |a 10.1016/j.bbi.2018.05.009
|2 doi
024 7 _ |a pmid:29763737
|2 pmid
024 7 _ |a 0889-1591
|2 ISSN
024 7 _ |a 1090-2139
|2 ISSN
024 7 _ |a altmetric:42106668
|2 altmetric
037 _ _ |a DKFZ-2018-01599
041 _ _ |a eng
082 _ _ |a 150
100 1 _ |a Kühl, T.
|b 0
245 _ _ |a Validation of inflammatory genetic variants associated with long-term cancer related fatigue in a large breast cancer cohort.
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539607137_22523
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Studies to date have reported several associations between single nucleotide polymorphisms (SNPs) and cancer related fatigue (CRF), but have been limited by small sample sizes, missing adjustment for relevant covariates or multiple testing, as well as varying CRF definitions, i.e. time and method of assessment. This study aimed to validate previously reported associations using the largest independent breast cancer sample to date and to evaluate further functional cytokine variants in relation to total CRF and all relevant CRF subdomains (physical, cognitive, and affective CRF).45 candidate SNPs in inflammatory pathway genes were selected based on previous reports (16 SNPs) or regulatory function (29 SNPs). Breast cancer patients recruited between 2002 and 2005 provided information on CRF at first follow-up (FU1) (N = 1389) and second follow-up (FU2) (N = 950), a median of 6.2 years and 11.7 years respectively after diagnosis. SNP associations were assessed using linear regression models on CRF scores separately for FU1 and FU2. Additionally, patients with persistent fatigue (fatigued at both time-points) were compared to those never fatigued using logistic regression models (N = 684). All analyses were adjusted for relevant covariates. Secondary analyses were conducted for CRF subdomains.For total CRF none of the previously reported associations were confirmed after correction for multiple testing. The p-value distribution of all SNPs was not different than the one expected by chance. Analyses of CRF subdomains yielded a significant association between TNF-α rs3093662 and persistent physical CRF (Odds Ratio (OR) = 3.23, 95% Confidence Interval (CI) = 1.71-6.10, p = 0.0003).We were unable to confirm previously reported findings, suggesting that individual SNPs are unlikely to be of clinical utility. Further investigations in well powered studies are warranted, which consider genetic heterogeneity according to subdomains of CRF.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Behrens, S.
|0 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea
|b 1
|u dkfz
700 1 _ |a Jung, A. Y.
|0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
|b 2
|u dkfz
700 1 _ |a Obi, N.
|b 3
700 1 _ |a Thöne, K.
|b 4
700 1 _ |a Schmidt, Martina
|0 P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac
|b 5
|u dkfz
700 1 _ |a Becher, H.
|b 6
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.bbi.2018.05.009
|g Vol. 73, p. 252 - 260
|0 PERI:(DE-600)1462491-6
|p 252 - 260
|t Brain, behavior and immunity
|v 73
|y 2018
|x 0889-1591
909 C O |o oai:inrepo02.dkfz.de:140844
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)2def8f8594c8f797f5ed4398258c6cac
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN BEHAV IMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRAIN BEHAV IMMUN : 2017
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
920 1 _ |0 I:(DE-He78)G210-20160331
|k G210
|l Bewegung, Präventionsforschung und Krebs
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)G210-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21