000141106 001__ 141106
000141106 005__ 20240229105118.0
000141106 0247_ $$2doi$$a10.1182/blood-2018-02-834721
000141106 0247_ $$2pmid$$apmid:30315124
000141106 0247_ $$2ISSN$$a0006-4971
000141106 0247_ $$2ISSN$$a1079-6533
000141106 0247_ $$2ISSN$$a1528-0020
000141106 0247_ $$2ISSN$$a1938-1336
000141106 0247_ $$2altmetric$$aaltmetric:49653345
000141106 037__ $$aDKFZ-2018-01640
000141106 041__ $$aeng
000141106 082__ $$a610
000141106 1001_ $$00000-0003-4448-6607$$aSchuetzmann, Daniel$$b0
000141106 245__ $$aTemporal auto-regulation during human PU.1 locus SubTAD formation.
000141106 260__ $$aStanford, Calif.$$bHighWire Press$$c2018
000141106 3367_ $$2DRIVER$$aarticle
000141106 3367_ $$2DataCite$$aOutput Types/Journal article
000141106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555505259_13138
000141106 3367_ $$2BibTeX$$aARTICLE
000141106 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141106 3367_ $$00$$2EndNote$$aJournal Article
000141106 520__ $$aEpigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture-sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ~75kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 auto-regulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 auto-regulation. Thus, our data support that PU.1 auto-regulates its expression in a hit-and-run manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.
000141106 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000141106 588__ $$aDataset connected to CrossRef, PubMed,
000141106 7001_ $$aWalter, Carolin$$b1
000141106 7001_ $$avan Riel, Boet$$b2
000141106 7001_ $$0P:(DE-He78)0d2d2e2cf00b6cd853cb19769ce54aca$$aKruse, Sabrina$$b3
000141106 7001_ $$aKönig, Thorsten$$b4
000141106 7001_ $$aErdmann, Tabea$$b5
000141106 7001_ $$aTönges, Alexander$$b6
000141106 7001_ $$aBindels, Eric$$b7
000141106 7001_ $$aWeilemann, Andre$$b8
000141106 7001_ $$aGebhard, Claudia$$b9
000141106 7001_ $$aWethmar, Klaus$$b10
000141106 7001_ $$aPerrod, Chiara$$b11
000141106 7001_ $$aMinderjahn, Julia$$b12
000141106 7001_ $$aRehli, Michael$$b13
000141106 7001_ $$aDelwel, Ruud$$b14
000141106 7001_ $$aLenz, Georg$$b15
000141106 7001_ $$aGröschel, Stefan$$b16
000141106 7001_ $$00000-0001-9740-0788$$aDugas, Martin$$b17
000141106 7001_ $$00000-0001-7977-9421$$aRosenbauer, Frank$$b18
000141106 773__ $$0PERI:(DE-600)1468538-3$$a10.1182/blood-2018-02-834721$$gp. blood-2018-02-834721 -$$n22$$p2643-2655$$tBlood$$v132$$x0006-4971$$y2018
000141106 909CO $$ooai:inrepo02.dkfz.de:141106$$pVDB
000141106 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0d2d2e2cf00b6cd853cb19769ce54aca$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000141106 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000141106 9141_ $$y2018
000141106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBLOOD : 2017
000141106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141106 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141106 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141106 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141106 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141106 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141106 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141106 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141106 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141106 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141106 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bBLOOD : 2017
000141106 9201_ $$0I:(DE-He78)G240-20160331$$kG240$$lMolekulare Leukämogenese$$x0
000141106 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x1
000141106 980__ $$ajournal
000141106 980__ $$aVDB
000141106 980__ $$aI:(DE-He78)G240-20160331
000141106 980__ $$aI:(DE-He78)L101-20160331
000141106 980__ $$aUNRESTRICTED