000141135 001__ 141135
000141135 005__ 20240229105119.0
000141135 0247_ $$2doi$$a10.1109/MPUL.2018.2857226
000141135 0247_ $$2pmid$$apmid:30273136
000141135 0247_ $$2ISSN$$a2154-2287
000141135 0247_ $$2ISSN$$a2154-2317
000141135 0247_ $$2altmetric$$aaltmetric:70395558
000141135 037__ $$aDKFZ-2018-01666
000141135 041__ $$aeng
000141135 082__ $$a570
000141135 1001_ $$0P:(DE-HGF)0$$aMandal, Subhamoy$$b0$$eFirst author
000141135 245__ $$aImaging Intelligence: AI Is Transforming Medical Imaging Across the Imaging Spectrum.
000141135 260__ $$aNew York, NY$$bIEEE$$c2018
000141135 3367_ $$2DRIVER$$aarticle
000141135 3367_ $$2DataCite$$aOutput Types/Journal article
000141135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1540556696_23542
000141135 3367_ $$2BibTeX$$aARTICLE
000141135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141135 3367_ $$00$$2EndNote$$aJournal Article
000141135 520__ $$aArtificial intelligence (AI) and machine learning (ML) have influenced medicine in myriad ways, and medical imaging is at the forefront of technological transformation. Recent advances in AI/ML fields have made an impact on imaging and image analysis across the board, from microscopy to radiology. AI has been an active field of research since the 1950s; however, for most of this period, algorithms achieved subhuman performance and were not broadly adopted in medicine. Recent enhancements for computational hardware is enabling researchers to revisit old AI algorithms and experiment with new mathematical ideas. Researchers are applying these methods to a broad array of medical technologies, ranging from microscopic image analysis to tomographic image reconstruction and diagnostic planning.
000141135 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141135 588__ $$aDataset connected to CrossRef, PubMed,
000141135 7001_ $$aGreenblatt, Aaron B$$b1
000141135 7001_ $$aAn, Jingzhi$$b2
000141135 773__ $$0PERI:(DE-600)2563701-0$$a10.1109/MPUL.2018.2857226$$gVol. 9, no. 5, p. 16 - 24$$n5$$p16 - 24$$tIEEE pulse$$v9$$x2154-2317$$y2018
000141135 909CO $$ooai:inrepo02.dkfz.de:141135$$pVDB
000141135 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141135 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141135 9141_ $$y2018
000141135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE PULSE : 2017
000141135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141135 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141135 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000141135 980__ $$ajournal
000141135 980__ $$aVDB
000141135 980__ $$aI:(DE-He78)E020-20160331
000141135 980__ $$aUNRESTRICTED