000141140 001__ 141140
000141140 005__ 20240229105119.0
000141140 0247_ $$2doi$$a10.1038/s41375-018-0102-4
000141140 0247_ $$2pmid$$apmid:29654265
000141140 0247_ $$2ISSN$$a0887-6924
000141140 0247_ $$2ISSN$$a1476-5551
000141140 0247_ $$2altmetric$$aaltmetric:37394588
000141140 037__ $$aDKFZ-2018-01671
000141140 041__ $$aeng
000141140 082__ $$a610
000141140 1001_ $$0P:(DE-He78)d9171698a9895e0ae788206ff8c56c50$$aRudat, Saskia$$b0$$eFirst author
000141140 245__ $$aRET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.
000141140 260__ $$aLondon$$bSpringer Nature$$c2018
000141140 3367_ $$2DRIVER$$aarticle
000141140 3367_ $$2DataCite$$aOutput Types/Journal article
000141140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680178110_7806
000141140 3367_ $$2BibTeX$$aARTICLE
000141140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141140 3367_ $$00$$2EndNote$$aJournal Article
000141140 520__ $$aMany cases of AML are associated with mutational activation of receptor tyrosine kinases (RTKs) such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK, as an essential gene in multiple subtypes of AML, and observed that AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes. Interrogation of downstream pathways identified mTORC1-mediated suppression of autophagy and subsequent stabilization of leukemogenic drivers such as mutant FLT3 as important RET effectors. Accordingly, genetic or pharmacologic RET inhibition impaired the growth of FLT3-dependent AML cell lines and was accompanied by upregulation of autophagy and FLT3 depletion. RET dependence was also evident in mouse models of AML and primary AML patient samples, and transcriptome and immunohistochemistry analyses identified elevated RET mRNA levels and co-expression of RET and FLT3 proteins in a substantial proportion of AML patients. Our results indicate that RET-mTORC1 signaling promotes AML through autophagy suppression, suggesting that targeting RET or, more broadly, depletion of leukemogenic drivers via autophagy induction provides a therapeutic opportunity in a relevant subset of AML patients.
000141140 536__ $$0G:(DE-HGF)POF3-317$$a317 - Translational cancer research (POF3-317)$$cPOF3-317$$fPOF III$$x0
000141140 588__ $$aDataset connected to CrossRef, PubMed,
000141140 7001_ $$0P:(DE-He78)8f461a59ab08b6df7e4899c9baac020f$$aPfaus, A.$$b1
000141140 7001_ $$0P:(DE-He78)ab70eaabcd744ddce901450728680af0$$aCheng, Y. Y.$$b2
000141140 7001_ $$0P:(DE-He78)c01c58e08497120385acd6388d7890e0$$aHoltmann, J.$$b3
000141140 7001_ $$aEllegast, J. M.$$b4
000141140 7001_ $$aBühler, C.$$b5
000141140 7001_ $$aMarcantonio, D Di$$b6
000141140 7001_ $$aMartinez, E.$$b7
000141140 7001_ $$aGöllner, S.$$b8
000141140 7001_ $$aWickenhauser, C.$$b9
000141140 7001_ $$aMüller-Tidow, C.$$b10
000141140 7001_ $$aLutz, C.$$b11
000141140 7001_ $$aBullinger, L.$$b12
000141140 7001_ $$0P:(DE-He78)7b613cadb8c16ce178713e15b85d982c$$aMilsom, Michael$$b13
000141140 7001_ $$aSykes, S. M.$$b14
000141140 7001_ $$0P:(DE-He78)f0144d171d26dbedb67c9db1df35629d$$aFröhling, S.$$b15$$eLast author
000141140 7001_ $$0P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250$$aScholl, Claudia$$b16$$eLast author
000141140 773__ $$0PERI:(DE-600)2008023-2$$a10.1038/s41375-018-0102-4$$gVol. 32, no. 10, p. 2189 - 2202$$n10$$p2189 - 2202$$tLeukemia$$v32$$x1476-5551$$y2018
000141140 909CO $$ooai:inrepo02.dkfz.de:141140$$pVDB
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d9171698a9895e0ae788206ff8c56c50$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8f461a59ab08b6df7e4899c9baac020f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ab70eaabcd744ddce901450728680af0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c01c58e08497120385acd6388d7890e0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7b613cadb8c16ce178713e15b85d982c$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0144d171d26dbedb67c9db1df35629d$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000141140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250$$aDeutsches Krebsforschungszentrum$$b16$$kDKFZ
000141140 9131_ $$0G:(DE-HGF)POF3-317$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vTranslational cancer research$$x0
000141140 9141_ $$y2018
000141140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141140 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLEUKEMIA : 2017
000141140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141140 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141140 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141140 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141140 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141140 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141140 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLEUKEMIA : 2017
000141140 9201_ $$0I:(DE-He78)G100-20160331$$kG100$$lTranslationale Onkologie$$x0
000141140 9201_ $$0I:(DE-He78)A012-20160331$$kA012$$lA012 Experimentelle Hämatologie$$x1
000141140 9201_ $$0I:(DE-He78)L101-20160331$$kL101$$lDKTK Heidelberg$$x2
000141140 9201_ $$0I:(DE-He78)G102-20160331$$kG102$$lAngewandte Funktionelle Genomik$$x3
000141140 980__ $$ajournal
000141140 980__ $$aVDB
000141140 980__ $$aI:(DE-He78)G100-20160331
000141140 980__ $$aI:(DE-He78)A012-20160331
000141140 980__ $$aI:(DE-He78)L101-20160331
000141140 980__ $$aI:(DE-He78)G102-20160331
000141140 980__ $$aUNRESTRICTED