001     141140
005     20240229105119.0
024 7 _ |a 10.1038/s41375-018-0102-4
|2 doi
024 7 _ |a pmid:29654265
|2 pmid
024 7 _ |a 0887-6924
|2 ISSN
024 7 _ |a 1476-5551
|2 ISSN
024 7 _ |a altmetric:37394588
|2 altmetric
037 _ _ |a DKFZ-2018-01671
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Rudat, Saskia
|0 P:(DE-He78)d9171698a9895e0ae788206ff8c56c50
|b 0
|e First author
245 _ _ |a RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.
260 _ _ |a London
|c 2018
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680178110_7806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many cases of AML are associated with mutational activation of receptor tyrosine kinases (RTKs) such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK, as an essential gene in multiple subtypes of AML, and observed that AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes. Interrogation of downstream pathways identified mTORC1-mediated suppression of autophagy and subsequent stabilization of leukemogenic drivers such as mutant FLT3 as important RET effectors. Accordingly, genetic or pharmacologic RET inhibition impaired the growth of FLT3-dependent AML cell lines and was accompanied by upregulation of autophagy and FLT3 depletion. RET dependence was also evident in mouse models of AML and primary AML patient samples, and transcriptome and immunohistochemistry analyses identified elevated RET mRNA levels and co-expression of RET and FLT3 proteins in a substantial proportion of AML patients. Our results indicate that RET-mTORC1 signaling promotes AML through autophagy suppression, suggesting that targeting RET or, more broadly, depletion of leukemogenic drivers via autophagy induction provides a therapeutic opportunity in a relevant subset of AML patients.
536 _ _ |a 317 - Translational cancer research (POF3-317)
|0 G:(DE-HGF)POF3-317
|c POF3-317
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Pfaus, A.
|0 P:(DE-He78)8f461a59ab08b6df7e4899c9baac020f
|b 1
700 1 _ |a Cheng, Y. Y.
|0 P:(DE-He78)ab70eaabcd744ddce901450728680af0
|b 2
700 1 _ |a Holtmann, J.
|0 P:(DE-He78)c01c58e08497120385acd6388d7890e0
|b 3
700 1 _ |a Ellegast, J. M.
|b 4
700 1 _ |a Bühler, C.
|b 5
700 1 _ |a Marcantonio, D Di
|b 6
700 1 _ |a Martinez, E.
|b 7
700 1 _ |a Göllner, S.
|b 8
700 1 _ |a Wickenhauser, C.
|b 9
700 1 _ |a Müller-Tidow, C.
|b 10
700 1 _ |a Lutz, C.
|b 11
700 1 _ |a Bullinger, L.
|b 12
700 1 _ |a Milsom, Michael
|0 P:(DE-He78)7b613cadb8c16ce178713e15b85d982c
|b 13
700 1 _ |a Sykes, S. M.
|b 14
700 1 _ |a Fröhling, S.
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 15
|e Last author
700 1 _ |a Scholl, Claudia
|0 P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250
|b 16
|e Last author
773 _ _ |a 10.1038/s41375-018-0102-4
|g Vol. 32, no. 10, p. 2189 - 2202
|0 PERI:(DE-600)2008023-2
|n 10
|p 2189 - 2202
|t Leukemia
|v 32
|y 2018
|x 1476-5551
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141140
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d9171698a9895e0ae788206ff8c56c50
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8f461a59ab08b6df7e4899c9baac020f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)ab70eaabcd744ddce901450728680af0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c01c58e08497120385acd6388d7890e0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)7b613cadb8c16ce178713e15b85d982c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)2c1a21d1cf5fdc9e297512c9d1354250
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-317
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Translational cancer research
|x 0
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LEUKEMIA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b LEUKEMIA : 2017
920 1 _ |0 I:(DE-He78)G100-20160331
|k G100
|l Translationale Onkologie
|x 0
920 1 _ |0 I:(DE-He78)A012-20160331
|k A012
|l A012 Experimentelle Hämatologie
|x 1
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 2
920 1 _ |0 I:(DE-He78)G102-20160331
|k G102
|l Angewandte Funktionelle Genomik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)G100-20160331
980 _ _ |a I:(DE-He78)A012-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a I:(DE-He78)G102-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21