000141170 001__ 141170
000141170 005__ 20240229105121.0
000141170 0247_ $$2doi$$a10.1002/mp.13127
000141170 0247_ $$2pmid$$apmid:30098038
000141170 0247_ $$2ISSN$$a0094-2405
000141170 0247_ $$2ISSN$$a1522-8541
000141170 0247_ $$2ISSN$$a2473-4209
000141170 037__ $$aDKFZ-2018-01697
000141170 041__ $$aeng
000141170 082__ $$a610
000141170 1001_ $$0P:(DE-He78)1491749e97799bb1a9f0efc366204297$$aDorn, Sabrina$$b0$$eFirst author$$udkfz
000141170 245__ $$aTowards context-sensitive CT imaging - organ-specific image formation for single (SECT) and dual energy computed tomography (DECT).
000141170 260__ $$aCollege Park, Md.$$bAAPM$$c2018
000141170 3367_ $$2DRIVER$$aarticle
000141170 3367_ $$2DataCite$$aOutput Types/Journal article
000141170 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556540604_13842
000141170 3367_ $$2BibTeX$$aARTICLE
000141170 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141170 3367_ $$00$$2EndNote$$aJournal Article
000141170 520__ $$aThe purpose of this study was to establish a novel paradigm to facilitate radiologists' workflow - combining mutually exclusive CT image properties that emerge from different reconstructions, display settings and organ-dependent spectral evaluation methods into a single context-sensitive imaging by exploiting prior anatomical information.The CT dataset is segmented and classified into different organs, for example, the liver, left and right kidney, spleen, aorta, and left and right lung as well as into the tissue types bone, fat, soft tissue, and vessels using a cascaded three-dimensional fully convolutional neural network (CNN) consisting of two successive 3D U-nets. The binary organ and tissue masks are transformed to tissue-related weighting coefficients that are used to allow individual organ-specific parameter settings in each anatomical region. Exploiting the prior knowledge, we develop a novel paradigm of a context-sensitive (CS) CT imaging consisting of a prior-based spatial resolution (CSR), display (CSD), and dual energy evaluation (CSDE). The CSR locally emphasizes desired image properties. On a per-voxel basis, the reconstruction most suitable for the organ, tissue type, and clinical indication is chosen automatically. Furthermore, an organ-specific windowing and display method is introduced that aims at providing superior image visualization. The CSDE analysis allows to simultaneously evaluate multiple organs and to show organ-specific DE overlays wherever appropriate. The ROIs that are required for a patient-specific calibration of the algorithms are automatically placed into the corresponding anatomical structures. The DE applications are selected and only applied to the specific organs based on the prior knowledge. The approach is evaluated using patient data acquired with a dual source CT system. The final CS images simultaneously link the indication-specific advantages of different parameter settings and result in images combining tissue-related desired image properties.A comparison with conventionally reconstructed images reveals an improved spatial resolution in highly attenuating objects and in air while the compound image maintains a low noise level in soft tissue. Furthermore, the tissue-related weighting coefficients allow for the combination of varying settings into one novel image display. We are, in principle, able to automate and standardize the spectral analysis of the DE data using prior anatomical information. Each tissue type is evaluated with its corresponding DE application simultaneously.This work provides a proof of concept of CS imaging. Since radiologists are not aware of the presented method and the tool is not yet implemented in everyday clinical practice, a comprehensive clinical evaluation in a large cohort might be topic of future research. Nonetheless, the presented method has potential to facilitate workflow in clinical routine and could potentially improve diagnostic accuracy by improving sensitivity for incidental findings. It is a potential step toward the presentation of evermore increasingly complex information in CT and toward improving the radiologists workflow significantly since dealing with multiple CT reconstructions may no longer be necessary. The method can be readily generalized to multienergy data and also to other modalities.
000141170 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141170 588__ $$aDataset connected to CrossRef, PubMed,
000141170 7001_ $$aChen, Shuqing$$b1
000141170 7001_ $$0P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aSawall, Stefan$$b2$$udkfz
000141170 7001_ $$0P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aMaier, Joscha$$b3$$udkfz
000141170 7001_ $$0P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aKnaup, Michael$$b4$$udkfz
000141170 7001_ $$0P:(DE-He78)1fb1300fe0ab9b45defcb93300ea3299$$aUhrig, Monika$$b5$$udkfz
000141170 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b6$$udkfz
000141170 7001_ $$aMaier, Andreas$$b7
000141170 7001_ $$aLell, Michael$$b8
000141170 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b9$$eLast author$$udkfz
000141170 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.13127$$gVol. 45, no. 10, p. 4541 - 4557$$n10$$p4541 - 4557$$tMedical physics$$v45$$x0094-2405$$y2018
000141170 909CO $$ooai:inrepo02.dkfz.de:141170$$pVDB
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1491749e97799bb1a9f0efc366204297$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1fb1300fe0ab9b45defcb93300ea3299$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000141170 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000141170 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141170 9141_ $$y2018
000141170 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141170 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141170 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2017
000141170 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141170 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141170 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141170 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141170 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141170 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141170 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141170 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141170 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141170 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141170 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000141170 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lRadiologie$$x1
000141170 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRöntgenbildgebung und Computertomographie$$x2
000141170 980__ $$ajournal
000141170 980__ $$aVDB
000141170 980__ $$aI:(DE-He78)E020-20160331
000141170 980__ $$aI:(DE-He78)E010-20160331
000141170 980__ $$aI:(DE-He78)E025-20160331
000141170 980__ $$aUNRESTRICTED