001     141170
005     20240229105121.0
024 7 _ |a 10.1002/mp.13127
|2 doi
024 7 _ |a pmid:30098038
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
037 _ _ |a DKFZ-2018-01697
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Dorn, Sabrina
|0 P:(DE-He78)1491749e97799bb1a9f0efc366204297
|b 0
|e First author
|u dkfz
245 _ _ |a Towards context-sensitive CT imaging - organ-specific image formation for single (SECT) and dual energy computed tomography (DECT).
260 _ _ |a College Park, Md.
|c 2018
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556540604_13842
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of this study was to establish a novel paradigm to facilitate radiologists' workflow - combining mutually exclusive CT image properties that emerge from different reconstructions, display settings and organ-dependent spectral evaluation methods into a single context-sensitive imaging by exploiting prior anatomical information.The CT dataset is segmented and classified into different organs, for example, the liver, left and right kidney, spleen, aorta, and left and right lung as well as into the tissue types bone, fat, soft tissue, and vessels using a cascaded three-dimensional fully convolutional neural network (CNN) consisting of two successive 3D U-nets. The binary organ and tissue masks are transformed to tissue-related weighting coefficients that are used to allow individual organ-specific parameter settings in each anatomical region. Exploiting the prior knowledge, we develop a novel paradigm of a context-sensitive (CS) CT imaging consisting of a prior-based spatial resolution (CSR), display (CSD), and dual energy evaluation (CSDE). The CSR locally emphasizes desired image properties. On a per-voxel basis, the reconstruction most suitable for the organ, tissue type, and clinical indication is chosen automatically. Furthermore, an organ-specific windowing and display method is introduced that aims at providing superior image visualization. The CSDE analysis allows to simultaneously evaluate multiple organs and to show organ-specific DE overlays wherever appropriate. The ROIs that are required for a patient-specific calibration of the algorithms are automatically placed into the corresponding anatomical structures. The DE applications are selected and only applied to the specific organs based on the prior knowledge. The approach is evaluated using patient data acquired with a dual source CT system. The final CS images simultaneously link the indication-specific advantages of different parameter settings and result in images combining tissue-related desired image properties.A comparison with conventionally reconstructed images reveals an improved spatial resolution in highly attenuating objects and in air while the compound image maintains a low noise level in soft tissue. Furthermore, the tissue-related weighting coefficients allow for the combination of varying settings into one novel image display. We are, in principle, able to automate and standardize the spectral analysis of the DE data using prior anatomical information. Each tissue type is evaluated with its corresponding DE application simultaneously.This work provides a proof of concept of CS imaging. Since radiologists are not aware of the presented method and the tool is not yet implemented in everyday clinical practice, a comprehensive clinical evaluation in a large cohort might be topic of future research. Nonetheless, the presented method has potential to facilitate workflow in clinical routine and could potentially improve diagnostic accuracy by improving sensitivity for incidental findings. It is a potential step toward the presentation of evermore increasingly complex information in CT and toward improving the radiologists workflow significantly since dealing with multiple CT reconstructions may no longer be necessary. The method can be readily generalized to multienergy data and also to other modalities.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Chen, Shuqing
|b 1
700 1 _ |a Sawall, Stefan
|0 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
|b 2
|u dkfz
700 1 _ |a Maier, Joscha
|0 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
|b 3
|u dkfz
700 1 _ |a Knaup, Michael
|0 P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c
|b 4
|u dkfz
700 1 _ |a Uhrig, Monika
|0 P:(DE-He78)1fb1300fe0ab9b45defcb93300ea3299
|b 5
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 6
|u dkfz
700 1 _ |a Maier, Andreas
|b 7
700 1 _ |a Lell, Michael
|b 8
700 1 _ |a Kachelriess, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.13127
|g Vol. 45, no. 10, p. 4541 - 4557
|0 PERI:(DE-600)1466421-5
|n 10
|p 4541 - 4557
|t Medical physics
|v 45
|y 2018
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141170
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)1491749e97799bb1a9f0efc366204297
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)1fb1300fe0ab9b45defcb93300ea3299
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l Medizinische Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l Radiologie
|x 1
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l Röntgenbildgebung und Computertomographie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21