000141250 001__ 141250
000141250 005__ 20240229105122.0
000141250 0247_ $$2doi$$a10.1002/gcc.22672
000141250 0247_ $$2pmid$$apmid:30248209
000141250 0247_ $$2ISSN$$a1045-2257
000141250 0247_ $$2ISSN$$a1098-2264
000141250 0247_ $$2altmetric$$aaltmetric:48870726
000141250 037__ $$aDKFZ-2018-01770
000141250 041__ $$aeng
000141250 082__ $$a610
000141250 1001_ $$aBure, Irina$$b0
000141250 245__ $$aLong noncoding RNA HOTAIR is upregulated in an aggressive subgroup of gastrointestinal stromal tumors (GIST) and mediates the establishment of gene-specific DNA methylation patterns.
000141250 260__ $$aNew York, NY$$bWiley-Liss$$c2018
000141250 3367_ $$2DRIVER$$aarticle
000141250 3367_ $$2DataCite$$aOutput Types/Journal article
000141250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1686654780_12250
000141250 3367_ $$2BibTeX$$aARTICLE
000141250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141250 3367_ $$00$$2EndNote$$aJournal Article
000141250 520__ $$aAberrant alterations of DNA methylation are common events in oncogenesis. The origin of cancer-associated epigenetic defects is of interest for mechanistic understanding of malignant transformation and-in the long run-therapeutic modulation of DNA methylation in a locus-specific manner. Given the ability of certain long noncoding RNAs to operate as an interface between DNA and the epigenetic modification machinery which can interact with DNA methyltransferases, we hypothesized-considering HOTAIR as an example-that this transcript may contribute to gene specificity of DNA methylation. Using gastrointestinal stromal tumors (GISTs, n = 67) as a model, we confirmed upregulation of HOTAIR in tumors with high risk of recurrence and showed high abundance of the transcript in GIST cell lines. HOTAIR knockdown in GIST-T1 cells triggered transcriptional response of genes involved in the organization and disassembly of the extracellular matrix and, notably, induced global locus-specific alterations of DNA methylation patterns. Hypomethylation was induced at a total of 507 CpG sites, whereas 382 CpG dinucleotides underwent gain of methylation upon HOTAIR depletion. Importantly, orchestrated gain or loss of methylation at multiple individual CpG sites was shown for cancer-related DPP4, RASSF1, ALDH1A3, and other targets. Collectively, our data indicate that HOTAIR enables target specificity of DNA methylation in GIST and is capable of dual (hypo- and hypermethylation) regulation by a yet to be defined mechanism. The results further suggest the feasibility of manipulating DNA methylation in a targeted manner and are of interest in the context of epigenetic cancer therapy.
000141250 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000141250 588__ $$aDataset connected to CrossRef, PubMed,
000141250 7001_ $$aGeer, Sandra$$b1
000141250 7001_ $$aKnopf, Jasmin$$b2
000141250 7001_ $$aRoas, Maike$$b3
000141250 7001_ $$0P:(DE-He78)d13e48d7a8549fa4a79325d00e5a33f8$$aHenze, Sabine$$b4$$udkfz
000141250 7001_ $$aStröbel, Philipp$$b5
000141250 7001_ $$aAgaimy, Abbas$$b6
000141250 7001_ $$0P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52$$aWiemann, Stefan$$b7$$udkfz
000141250 7001_ $$0P:(DE-He78)c684a26e52cc44716354a4d15f530b4e$$aHoheisel, Jörg$$b8$$udkfz
000141250 7001_ $$aHartmann, Arndt$$b9
000141250 7001_ $$aHaller, Florian$$b10
000141250 7001_ $$00000-0002-1798-921X$$aMoskalev, Evgeny A$$b11
000141250 773__ $$0PERI:(DE-600)1492641-6$$a10.1002/gcc.22672$$gVol. 57, no. 11, p. 584 - 597$$n11$$p584 - 597$$tGenes, chromosomes & cancer$$v57$$x1045-2257$$y2018
000141250 909CO $$ooai:inrepo02.dkfz.de:141250$$pVDB
000141250 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d13e48d7a8549fa4a79325d00e5a33f8$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141250 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000141250 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c684a26e52cc44716354a4d15f530b4e$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000141250 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000141250 9141_ $$y2018
000141250 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGENE CHROMOSOME CANC : 2017
000141250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141250 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141250 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141250 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141250 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141250 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141250 9201_ $$0I:(DE-He78)W110-20160331$$kW110$$lMicroarrays$$x0
000141250 9201_ $$0I:(DE-He78)B050-20160331$$kB050$$lB050 Molekulare Genomanalyse$$x1
000141250 9201_ $$0I:(DE-He78)B070-20160331$$kB070$$lB070 Funktionelle Genomanalyse$$x2
000141250 980__ $$ajournal
000141250 980__ $$aVDB
000141250 980__ $$aI:(DE-He78)W110-20160331
000141250 980__ $$aI:(DE-He78)B050-20160331
000141250 980__ $$aI:(DE-He78)B070-20160331
000141250 980__ $$aUNRESTRICTED