001     141250
005     20240229105122.0
024 7 _ |a 10.1002/gcc.22672
|2 doi
024 7 _ |a pmid:30248209
|2 pmid
024 7 _ |a 1045-2257
|2 ISSN
024 7 _ |a 1098-2264
|2 ISSN
024 7 _ |a altmetric:48870726
|2 altmetric
037 _ _ |a DKFZ-2018-01770
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Bure, Irina
|b 0
245 _ _ |a Long noncoding RNA HOTAIR is upregulated in an aggressive subgroup of gastrointestinal stromal tumors (GIST) and mediates the establishment of gene-specific DNA methylation patterns.
260 _ _ |a New York, NY
|c 2018
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1686654780_12250
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Aberrant alterations of DNA methylation are common events in oncogenesis. The origin of cancer-associated epigenetic defects is of interest for mechanistic understanding of malignant transformation and-in the long run-therapeutic modulation of DNA methylation in a locus-specific manner. Given the ability of certain long noncoding RNAs to operate as an interface between DNA and the epigenetic modification machinery which can interact with DNA methyltransferases, we hypothesized-considering HOTAIR as an example-that this transcript may contribute to gene specificity of DNA methylation. Using gastrointestinal stromal tumors (GISTs, n = 67) as a model, we confirmed upregulation of HOTAIR in tumors with high risk of recurrence and showed high abundance of the transcript in GIST cell lines. HOTAIR knockdown in GIST-T1 cells triggered transcriptional response of genes involved in the organization and disassembly of the extracellular matrix and, notably, induced global locus-specific alterations of DNA methylation patterns. Hypomethylation was induced at a total of 507 CpG sites, whereas 382 CpG dinucleotides underwent gain of methylation upon HOTAIR depletion. Importantly, orchestrated gain or loss of methylation at multiple individual CpG sites was shown for cancer-related DPP4, RASSF1, ALDH1A3, and other targets. Collectively, our data indicate that HOTAIR enables target specificity of DNA methylation in GIST and is capable of dual (hypo- and hypermethylation) regulation by a yet to be defined mechanism. The results further suggest the feasibility of manipulating DNA methylation in a targeted manner and are of interest in the context of epigenetic cancer therapy.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Geer, Sandra
|b 1
700 1 _ |a Knopf, Jasmin
|b 2
700 1 _ |a Roas, Maike
|b 3
700 1 _ |a Henze, Sabine
|0 P:(DE-He78)d13e48d7a8549fa4a79325d00e5a33f8
|b 4
|u dkfz
700 1 _ |a Ströbel, Philipp
|b 5
700 1 _ |a Agaimy, Abbas
|b 6
700 1 _ |a Wiemann, Stefan
|0 P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52
|b 7
|u dkfz
700 1 _ |a Hoheisel, Jörg
|0 P:(DE-He78)c684a26e52cc44716354a4d15f530b4e
|b 8
|u dkfz
700 1 _ |a Hartmann, Arndt
|b 9
700 1 _ |a Haller, Florian
|b 10
700 1 _ |a Moskalev, Evgeny A
|0 0000-0002-1798-921X
|b 11
773 _ _ |a 10.1002/gcc.22672
|g Vol. 57, no. 11, p. 584 - 597
|0 PERI:(DE-600)1492641-6
|n 11
|p 584 - 597
|t Genes, chromosomes & cancer
|v 57
|y 2018
|x 1045-2257
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141250
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d13e48d7a8549fa4a79325d00e5a33f8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)f6bebe05e7a748d3cbf9f59659567d52
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)c684a26e52cc44716354a4d15f530b4e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GENE CHROMOSOME CANC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)W110-20160331
|k W110
|l Microarrays
|x 0
920 1 _ |0 I:(DE-He78)B050-20160331
|k B050
|l B050 Molekulare Genomanalyse
|x 1
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)W110-20160331
980 _ _ |a I:(DE-He78)B050-20160331
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21