001     141420
005     20240229105127.0
024 7 _ |a 10.1002/ijc.31647
|2 doi
024 7 _ |a pmid:29974464
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:44714796
|2 altmetric
037 _ _ |a DKFZ-2018-01926
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jaskulski, Stefanie
|0 P:(DE-He78)e16e2a17f7dd2e7f7e917c0382f19b2d
|b 0
|e First author
|u dkfz
245 _ _ |a Circulating enterolactone concentrations and prognosis of postmenopausal breast cancer: assessment of mediation by inflammatory markers.
260 _ _ |a Bognor Regis
|c 2018
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542808249_19439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Higher lignan exposure has been associated with lower all-cause mortality (ACM) and breast cancer-specific mortality (BCSM) for postmenopausal breast cancer patients. However, the biological mechanisms underpinning these associations are still unclear. We investigated for the first time whether and to what extent the association between enterolactone (ENL), the major lignan metabolite, and postmenopausal breast cancer prognosis is mediated by inflammatory biomarkers. Circulating concentrations of ENL and inflammatory markers were measured in a population-based prospective cohort of 1,743 breast cancer patients recruited between 2002 and 2005 and followed-up until 2009. Hazard ratios (HR) and 95% CIs were estimated using multivariable Cox regression. Mediation analysis was performed to estimate the percentage association between ENL (log2) and ACM, BCSM and distant disease-free survival (DDFS), which is mediated by C-reactive protein (CRP) (log2), as the strongest potential mediator, and also interleukin (IL)-10. Median serum/plasma ENL and CRP concentrations for all patients, including 180 deceased patients, were 23.2 and 17.5 nmol/L, and 3.2 and 6.5 mg/l, respectively. ENL concentrations were significantly inversely associated with ACM, BCSM and DDFS (per doubling of ENL concentrations: HRs 0.93 [0.87, 0.99], 0.91 [0.84, 0.99] and 0.92 [0.87, 0.99]), after adjusting for prognostic factors and BMI. Estimated 18, 14 and 12% of the effects of ENL on ACM, BCSM and DDFS, respectively, were mediated through CRP. No mediational effect of IL-10 was found. We provide first evidence that the proinflammatory marker CRP may partially mediate the association of ENL with postmenopausal breast cancer survival, which supports hormone-independent mechanisms.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Jung, Audrey Ying-Chee
|0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
|b 1
|u dkfz
700 1 _ |a Behrens, Sabine
|0 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea
|b 2
|u dkfz
700 1 _ |a Johnson, Theron Scot
|0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
|b 3
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 4
|u dkfz
700 1 _ |a Thöne, Kathrin
|b 5
700 1 _ |a Flesch-Janys, Dieter
|b 6
700 1 _ |a Sookthai, Disorn
|0 P:(DE-He78)fd4ffe2a3f08e0158b82400acd6716be
|b 7
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 8
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.31647
|g Vol. 143, no. 11, p. 2698 - 2708
|0 PERI:(DE-600)1474822-8
|n 11
|p 2698 - 2708
|t International journal of cancer
|v 143
|y 2018
|x 0020-7136
909 C O |o oai:inrepo02.dkfz.de:141420
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e16e2a17f7dd2e7f7e917c0382f19b2d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)6b04712f3afe72044d496a25505cb1ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)fd4ffe2a3f08e0158b82400acd6716be
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2017
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebserkrankungen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21