Home > Publications database > Clickstream Analysis for Crowd-Based Object Segmentation with Confidence. > print |
001 | 141663 | ||
005 | 20240229105127.0 | ||
024 | 7 | _ | |a 10.1109/TPAMI.2017.2777967 |2 doi |
024 | 7 | _ | |a pmid:29989983 |2 pmid |
024 | 7 | _ | |a altmetric:14117635 |2 altmetric |
037 | _ | _ | |a DKFZ-2018-01934 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Heim, Eric |0 P:(DE-He78)c79e48a0edbf2eee227450c6984615fa |b 0 |e First author |u dkfz |
245 | _ | _ | |a Clickstream Analysis for Crowd-Based Object Segmentation with Confidence. |
260 | _ | _ | |a New York, NY |c 2018 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1661346660_30652 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Trans. Pattern Anal. Mach. Intell.) = 2160-92921939-3539 (import from CrossRef, PubMed, ) |
520 | _ | _ | |a With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowledge, we are the first to analyze the annotation process to improve crowd-sourced image segmentation. Our method involves training a regressor to estimate the quality of a segmentation from the annotator's clickstream data. The quality estimation can be used to identify spam and weight individual annotations by their (estimated) quality when merging multiple segmentations of one image. Using a total of 29,000 crowd annotations performed on publicly available data of different object classes, we show that (1) our method is highly accurate in estimating the segmentation quality based on clickstream data, (2) outperforms state-of-the-art methods for merging multiple annotations. As the regressor does not need to be trained on the object class that it is applied to it can be regarded as a low-cost option for quality control and confidence analysis in the context of crowd-based image annotation. |
536 | _ | _ | |a 315 - Imaging and radiooncology (POF3-315) |0 G:(DE-HGF)POF3-315 |c POF3-315 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Seitel, Alexander |0 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0 |b 1 |u dkfz |
700 | 1 | _ | |a Andrulis, Jonas |b 2 |
700 | 1 | _ | |a Isensee, Fabian |0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |b 3 |u dkfz |
700 | 1 | _ | |a Stock, Christian |0 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91 |b 4 |u dkfz |
700 | 1 | _ | |a Ross, Tobias |0 P:(DE-He78)47f4a97043307540977baf09618b5d3d |b 5 |u dkfz |
700 | 1 | _ | |a Maier-Hein, Lena |0 P:(DE-He78)26a1176cd8450660333a012075050072 |b 6 |e Last author |u dkfz |
773 | _ | _ | |a 10.1109/TPAMI.2017.2777967 |g Vol. 40, no. 12, p. 2814 - 2826 |0 PERI:(DE-600)2027336-8 |n 12 |p 2814 - 2826 |t IEEE transactions on pattern analysis and machine intelligence |v 40 |y 2018 |x 0162-8828 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:141663 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)c79e48a0edbf2eee227450c6984615fa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)47f4a97043307540977baf09618b5d3d |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)26a1176cd8450660333a012075050072 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Imaging and radiooncology |x 0 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE T PATTERN ANAL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b IEEE T PATTERN ANAL : 2017 |
920 | 1 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E132-20160331 |k E132 |l Medizinische Bildverarbeitung |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E130-20160331 |
980 | _ | _ | |a I:(DE-He78)E132-20160331 |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|