001     141663
005     20240229105127.0
024 7 _ |a 10.1109/TPAMI.2017.2777967
|2 doi
024 7 _ |a pmid:29989983
|2 pmid
024 7 _ |a altmetric:14117635
|2 altmetric
037 _ _ |a DKFZ-2018-01934
041 _ _ |a eng
082 _ _ |a 004
100 1 _ |a Heim, Eric
|0 P:(DE-He78)c79e48a0edbf2eee227450c6984615fa
|b 0
|e First author
|u dkfz
245 _ _ |a Clickstream Analysis for Crowd-Based Object Segmentation with Confidence.
260 _ _ |a New York, NY
|c 2018
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661346660_30652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Trans. Pattern Anal. Mach. Intell.) = 2160-92921939-3539 (import from CrossRef, PubMed, )
520 _ _ |a With the rapidly increasing interest in machine learning based solutions for automatic image annotation, the availability of reference annotations for algorithm training is one of the major bottlenecks in the field. Crowdsourcing has evolved as a valuable option for low-cost and large-scale data annotation; however, quality control remains a major issue which needs to be addressed. To our knowledge, we are the first to analyze the annotation process to improve crowd-sourced image segmentation. Our method involves training a regressor to estimate the quality of a segmentation from the annotator's clickstream data. The quality estimation can be used to identify spam and weight individual annotations by their (estimated) quality when merging multiple segmentations of one image. Using a total of 29,000 crowd annotations performed on publicly available data of different object classes, we show that (1) our method is highly accurate in estimating the segmentation quality based on clickstream data, (2) outperforms state-of-the-art methods for merging multiple annotations. As the regressor does not need to be trained on the object class that it is applied to it can be regarded as a low-cost option for quality control and confidence analysis in the context of crowd-based image annotation.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Seitel, Alexander
|0 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
|b 1
|u dkfz
700 1 _ |a Andrulis, Jonas
|b 2
700 1 _ |a Isensee, Fabian
|0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
|b 3
|u dkfz
700 1 _ |a Stock, Christian
|0 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91
|b 4
|u dkfz
700 1 _ |a Ross, Tobias
|0 P:(DE-He78)47f4a97043307540977baf09618b5d3d
|b 5
|u dkfz
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1109/TPAMI.2017.2777967
|g Vol. 40, no. 12, p. 2814 - 2826
|0 PERI:(DE-600)2027336-8
|n 12
|p 2814 - 2826
|t IEEE transactions on pattern analysis and machine intelligence
|v 40
|y 2018
|x 0162-8828
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141663
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c79e48a0edbf2eee227450c6984615fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)a83df473f58a6a8ef43263ec9783ecf0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)47f4a97043307540977baf09618b5d3d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T PATTERN ANAL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T PATTERN ANAL : 2017
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E132-20160331
|k E132
|l Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E132-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21