000141708 001__ 141708
000141708 005__ 20240229112525.0
000141708 0247_ $$2doi$$a10.1136/gutjnl-2017-315730
000141708 0247_ $$2pmid$$apmid:29615487
000141708 0247_ $$2ISSN$$a0017-5749
000141708 0247_ $$2ISSN$$a1468-3288
000141708 0247_ $$2altmetric$$aaltmetric:35424777
000141708 037__ $$aDKFZ-2018-01979
000141708 041__ $$aeng
000141708 082__ $$a610
000141708 1001_ $$aSmith, Todd$$b0
000141708 245__ $$aComparison of prognostic models to predict the occurrence of colorectal cancer in asymptomatic individuals: a systematic literature review and external validation in the EPIC and UK Biobank prospective cohort studies.
000141708 260__ $$aLondon$$bBMJ Publishing Group$$c2019
000141708 3367_ $$2DRIVER$$aarticle
000141708 3367_ $$2DataCite$$aOutput Types/Journal article
000141708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562232421_5829$$xReview Article
000141708 3367_ $$2BibTeX$$aARTICLE
000141708 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141708 3367_ $$00$$2EndNote$$aJournal Article
000141708 520__ $$aTo systematically identify and validate published colorectal cancer risk prediction models that do not require invasive testing in two large population-based prospective cohorts.Models were identified through an update of a published systematic review and validated in the European Prospective Investigation into Cancer and Nutrition (EPIC) and the UK Biobank. The performance of the models to predict the occurrence of colorectal cancer within 5 or 10 years after study enrolment was assessed by discrimination (C-statistic) and calibration (plots of observed vs predicted probability).The systematic review and its update identified 16 models from 8 publications (8 colorectal, 5 colon and 3 rectal). The number of participants included in each model validation ranged from 41 587 to 396 515, and the number of cases ranged from 115 to 1781. Eligible and ineligible participants across the models were largely comparable. Calibration of the models, where assessable, was very good and further improved by recalibration. The C-statistics of the models were largely similar between validation cohorts with the highest values achieved being 0.70 (95% CI 0.68 to 0.72) in the UK Biobank and 0.71 (95% CI 0.67 to 0.74) in EPIC.Several of these non-invasive models exhibited good calibration and discrimination within both external validation populations and are therefore potentially suitable candidates for the facilitation of risk stratification in population-based colorectal screening programmes. Future work should both evaluate this potential, through modelling and impact studies, and ascertain if further enhancement in their performance can be obtained.
000141708 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000141708 588__ $$aDataset connected to CrossRef, PubMed,
000141708 7001_ $$aMuller, David C$$b1
000141708 7001_ $$aMoons, Karel G M$$b2
000141708 7001_ $$aCross, Amanda J$$b3
000141708 7001_ $$aJohansson, Mattias$$b4
000141708 7001_ $$aFerrari, Pietro$$b5
000141708 7001_ $$aFagherazzi, Guy$$b6
000141708 7001_ $$aPeeters, Petra H M$$b7
000141708 7001_ $$aSeveri, Gianluca$$b8
000141708 7001_ $$0P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aHüsing, Anika$$b9$$udkfz
000141708 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b10$$udkfz
000141708 7001_ $$aTjonneland, Anne$$b11
000141708 7001_ $$aOlsen, Anja$$b12
000141708 7001_ $$aOvervad, Kim$$b13
000141708 7001_ $$aBonet, Catalina$$b14
000141708 7001_ $$aRodriguez-Barranco, Miguel$$b15
000141708 7001_ $$aHuerta, Jose Maria$$b16
000141708 7001_ $$aBarricarte Gurrea, Aurelio$$b17
000141708 7001_ $$00000-0003-3345-7333$$aBradbury, Kathryn E$$b18
000141708 7001_ $$aTrichopoulou, Antonia$$b19
000141708 7001_ $$aBamia, Christina$$b20
000141708 7001_ $$aOrfanos, Philippos$$b21
000141708 7001_ $$aPalli, Domenico$$b22
000141708 7001_ $$aPala, Valeria$$b23
000141708 7001_ $$aVineis, Paolo$$b24
000141708 7001_ $$aBueno-de-Mesquita, Bas$$b25
000141708 7001_ $$aOhlsson, Bodil$$b26
000141708 7001_ $$aHarlid, Sophia$$b27
000141708 7001_ $$aVan Guelpen, Bethany$$b28
000141708 7001_ $$aSkeie, Guri$$b29
000141708 7001_ $$aWeiderpass, Elisabete$$b30
000141708 7001_ $$aJenab, Mazda$$b31
000141708 7001_ $$00000-0003-3347-8249$$aMurphy, Neil$$b32
000141708 7001_ $$aRiboli, Elio$$b33
000141708 7001_ $$aGunter, Marc J$$b34
000141708 7001_ $$aAleksandrova, Krasimira Jekova$$b35
000141708 7001_ $$aTzoulaki, Ioanna$$b36
000141708 773__ $$0PERI:(DE-600)1492637-4$$a10.1136/gutjnl-2017-315730$$gp. gutjnl-2017-315730 -$$n4$$p672-683$$tGut$$v68$$x1468-3288$$y2019
000141708 909CO $$ooai:inrepo02.dkfz.de:141708$$pVDB
000141708 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000141708 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000141708 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000141708 9141_ $$y2019
000141708 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz
000141708 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGUT : 2017
000141708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141708 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141708 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141708 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141708 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141708 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141708 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141708 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141708 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141708 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bGUT : 2017
000141708 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0
000141708 980__ $$ajournal
000141708 980__ $$aVDB
000141708 980__ $$aI:(DE-He78)C020-20160331
000141708 980__ $$aUNRESTRICTED