000141708 001__ 141708 000141708 005__ 20240229112525.0 000141708 0247_ $$2doi$$a10.1136/gutjnl-2017-315730 000141708 0247_ $$2pmid$$apmid:29615487 000141708 0247_ $$2ISSN$$a0017-5749 000141708 0247_ $$2ISSN$$a1468-3288 000141708 0247_ $$2altmetric$$aaltmetric:35424777 000141708 037__ $$aDKFZ-2018-01979 000141708 041__ $$aeng 000141708 082__ $$a610 000141708 1001_ $$aSmith, Todd$$b0 000141708 245__ $$aComparison of prognostic models to predict the occurrence of colorectal cancer in asymptomatic individuals: a systematic literature review and external validation in the EPIC and UK Biobank prospective cohort studies. 000141708 260__ $$aLondon$$bBMJ Publishing Group$$c2019 000141708 3367_ $$2DRIVER$$aarticle 000141708 3367_ $$2DataCite$$aOutput Types/Journal article 000141708 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562232421_5829$$xReview Article 000141708 3367_ $$2BibTeX$$aARTICLE 000141708 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000141708 3367_ $$00$$2EndNote$$aJournal Article 000141708 520__ $$aTo systematically identify and validate published colorectal cancer risk prediction models that do not require invasive testing in two large population-based prospective cohorts.Models were identified through an update of a published systematic review and validated in the European Prospective Investigation into Cancer and Nutrition (EPIC) and the UK Biobank. The performance of the models to predict the occurrence of colorectal cancer within 5 or 10 years after study enrolment was assessed by discrimination (C-statistic) and calibration (plots of observed vs predicted probability).The systematic review and its update identified 16 models from 8 publications (8 colorectal, 5 colon and 3 rectal). The number of participants included in each model validation ranged from 41 587 to 396 515, and the number of cases ranged from 115 to 1781. Eligible and ineligible participants across the models were largely comparable. Calibration of the models, where assessable, was very good and further improved by recalibration. The C-statistics of the models were largely similar between validation cohorts with the highest values achieved being 0.70 (95% CI 0.68 to 0.72) in the UK Biobank and 0.71 (95% CI 0.67 to 0.74) in EPIC.Several of these non-invasive models exhibited good calibration and discrimination within both external validation populations and are therefore potentially suitable candidates for the facilitation of risk stratification in population-based colorectal screening programmes. Future work should both evaluate this potential, through modelling and impact studies, and ascertain if further enhancement in their performance can be obtained. 000141708 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0 000141708 588__ $$aDataset connected to CrossRef, PubMed, 000141708 7001_ $$aMuller, David C$$b1 000141708 7001_ $$aMoons, Karel G M$$b2 000141708 7001_ $$aCross, Amanda J$$b3 000141708 7001_ $$aJohansson, Mattias$$b4 000141708 7001_ $$aFerrari, Pietro$$b5 000141708 7001_ $$aFagherazzi, Guy$$b6 000141708 7001_ $$aPeeters, Petra H M$$b7 000141708 7001_ $$aSeveri, Gianluca$$b8 000141708 7001_ $$0P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aHüsing, Anika$$b9$$udkfz 000141708 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b10$$udkfz 000141708 7001_ $$aTjonneland, Anne$$b11 000141708 7001_ $$aOlsen, Anja$$b12 000141708 7001_ $$aOvervad, Kim$$b13 000141708 7001_ $$aBonet, Catalina$$b14 000141708 7001_ $$aRodriguez-Barranco, Miguel$$b15 000141708 7001_ $$aHuerta, Jose Maria$$b16 000141708 7001_ $$aBarricarte Gurrea, Aurelio$$b17 000141708 7001_ $$00000-0003-3345-7333$$aBradbury, Kathryn E$$b18 000141708 7001_ $$aTrichopoulou, Antonia$$b19 000141708 7001_ $$aBamia, Christina$$b20 000141708 7001_ $$aOrfanos, Philippos$$b21 000141708 7001_ $$aPalli, Domenico$$b22 000141708 7001_ $$aPala, Valeria$$b23 000141708 7001_ $$aVineis, Paolo$$b24 000141708 7001_ $$aBueno-de-Mesquita, Bas$$b25 000141708 7001_ $$aOhlsson, Bodil$$b26 000141708 7001_ $$aHarlid, Sophia$$b27 000141708 7001_ $$aVan Guelpen, Bethany$$b28 000141708 7001_ $$aSkeie, Guri$$b29 000141708 7001_ $$aWeiderpass, Elisabete$$b30 000141708 7001_ $$aJenab, Mazda$$b31 000141708 7001_ $$00000-0003-3347-8249$$aMurphy, Neil$$b32 000141708 7001_ $$aRiboli, Elio$$b33 000141708 7001_ $$aGunter, Marc J$$b34 000141708 7001_ $$aAleksandrova, Krasimira Jekova$$b35 000141708 7001_ $$aTzoulaki, Ioanna$$b36 000141708 773__ $$0PERI:(DE-600)1492637-4$$a10.1136/gutjnl-2017-315730$$gp. gutjnl-2017-315730 -$$n4$$p672-683$$tGut$$v68$$x1468-3288$$y2019 000141708 909CO $$ooai:inrepo02.dkfz.de:141708$$pVDB 000141708 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6519c85d61a3def7974665471b8a4f74$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ 000141708 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ 000141708 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0 000141708 9141_ $$y2019 000141708 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz 000141708 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000141708 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGUT : 2017 000141708 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000141708 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000141708 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000141708 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000141708 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000141708 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000141708 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000141708 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000141708 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000141708 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000141708 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000141708 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000141708 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000141708 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bGUT : 2017 000141708 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lEpidemiologie von Krebserkrankungen$$x0 000141708 980__ $$ajournal 000141708 980__ $$aVDB 000141708 980__ $$aI:(DE-He78)C020-20160331 000141708 980__ $$aUNRESTRICTED