000141737 001__ 141737
000141737 005__ 20240229121827.0
000141737 0247_ $$2doi$$a10.1007/s10654-018-0457-x
000141737 0247_ $$2pmid$$apmid:30406496
000141737 0247_ $$2ISSN$$a0393-2990
000141737 0247_ $$2ISSN$$a1573-7284
000141737 037__ $$aDKFZ-2018-02006
000141737 041__ $$aeng
000141737 082__ $$a610
000141737 1001_ $$0P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aXuan, Yang$$b0$$eFirst author$$udkfz
000141737 245__ $$aAssociation of serum markers of oxidative stress with myocardial infarction and stroke: pooled results from four large European cohort studies.
000141737 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2019
000141737 3367_ $$2DRIVER$$aarticle
000141737 3367_ $$2DataCite$$aOutput Types/Journal article
000141737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636555308_20828
000141737 3367_ $$2BibTeX$$aARTICLE
000141737 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141737 3367_ $$00$$2EndNote$$aJournal Article
000141737 520__ $$aOxidative stress contributes to endothelial dysfunction and is involved in the pathogenesis of myocardial infarction (MI) and stroke. However, associations of biomarkers of oxidative stress with MI and stroke have not yet been addressed in large cohort studies. A nested case-control design was applied in four population-based cohort studies from Germany, Czech Republic, Poland and Lithuania. Derivatives of reactive oxygen metabolites (d-ROMs) levels, as a proxy for the reactive oxygen species burden, and total thiol levels (TTL), as a proxy for the reductive capacity, were measured in baseline serum samples of 476 incident MI cases and 454 incident stroke cases as well as five controls per case individually matched by study center, age and sex. Statistical analyses were conducted with multi-variable adjusted conditional logistic regression models. d-ROMs levels were associated with both MI (odds ratio (OR), 1.21 [95% confidence interval (CI) 1.05-1.40] for 100 Carr units increase) and stroke (OR, 1.17 [95% CI 1.01-1.35] for 100 Carr units increase). TTL were only associated with stroke incidence (OR, 0.79 [95% CI 0.63-0.99] for quartiles 2-4 vs. quartile 1). The observed relationships were stronger with fatal than with non-fatal endpoints; association of TTL with fatal MI was statistically significant (OR, 0.69 [95% CI 0.51-0.93] for 100 μmol/L-increase). This pooled analysis of four large population-based cohorts suggests an important contribution of an imbalanced redox system to the etiology of mainly fatal MI and stroke events.
000141737 536__ $$0G:(DE-HGF)POF3-323$$a323 - Metabolic Dysfunction as Risk Factor (POF3-323)$$cPOF3-323$$fPOF III$$x0
000141737 588__ $$aDataset connected to CrossRef, PubMed,
000141737 7001_ $$aBobak, Martin$$b1
000141737 7001_ $$0P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aAnusruti, Ankita$$b2$$udkfz
000141737 7001_ $$aJansen, Eugène H J M$$b3
000141737 7001_ $$aPająk, Andrzej$$b4
000141737 7001_ $$aTamosiunas, Abdonas$$b5
000141737 7001_ $$0P:(DE-He78)97343bbd9545a4b87574e74329dabfd1$$aSaum, Kai-Uwe$$b6$$udkfz
000141737 7001_ $$aHolleczek, Bernd$$b7
000141737 7001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGao, Xin$$b8$$udkfz
000141737 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b9$$udkfz
000141737 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b10$$eLast author$$udkfz
000141737 773__ $$0PERI:(DE-600)2004992-4$$a10.1007/s10654-018-0457-x$$n5$$p471-481$$tEuropean journal of epidemiology$$v34$$x1573-7284$$y2019
000141737 909CO $$ooai:inrepo02.dkfz.de:141737$$pVDB
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ebbb855092f574cef61b6f3ce7640d87$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c78a3ddbabb2155657210120936e9801$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97343bbd9545a4b87574e74329dabfd1$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000141737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000141737 9131_ $$0G:(DE-HGF)POF3-323$$1G:(DE-HGF)POF3-320$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lHerz-Kreislauf-Stoffwechselerkrankungen$$vMetabolic Dysfunction as Risk Factor$$x0
000141737 9141_ $$y2019
000141737 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141737 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000141737 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J EPIDEMIOL : 2017
000141737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141737 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141737 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141737 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141737 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141737 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141737 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J EPIDEMIOL : 2017
000141737 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000141737 980__ $$ajournal
000141737 980__ $$aVDB
000141737 980__ $$aI:(DE-He78)C070-20160331
000141737 980__ $$aUNRESTRICTED