001     141812
005     20240229112527.0
024 7 _ |a 10.1158/1055-9965.EPI-18-0378
|2 doi
024 7 _ |a pmid:30487132
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:56427958
|2 altmetric
037 _ _ |a DKFZ-2018-02080
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Guan, Zhong
|0 P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56
|b 0
|e First author
|u dkfz
245 _ _ |a Whole-blood DNA methylation markers in early detection of breast cancer: a systematic literature review.
260 _ _ |a Philadelphia, Pa.
|c 2019
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562071433_20048
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Whole-blood DNA methylation markers have been suggested as potential biomarkers for early detection of breast cancer (BC). We conducted a systematic review of literature on whole-blood DNA methylation markers for BC detection. PubMed and ISI Web of Knowledge were searched up to 29th May 2018. Overall, 33 studies evaluating 355 markers were included. The diagnostic value of most individual markers was relatively modest, with only 6 markers showing sensitivity >40% at specificity >75% (only 2 (HYAL2 and S100P) were independently validated). Although relatively strong associations (OR<=0.5 or OR>=2) with BC were reported for 14 markers, most of them were not independently validated. Two prospective studies performed epigenome-wide association analysis and identified 276 CpG sites related to BC risk, but no overlap was observed between CpGs reported from these 2 studies. Five studies incorporated individual markers as panels but only 2 of them used a test-validation approach. In conclusion, so far detected methylation markers are insufficient for BC early detection, but markers or marker-combinations may be useful for BC risk stratification. Utilizing high-throughput methods of methylation quantification, future studies should focus on further mining informative methylation markers and derivation of enhanced multi-maker panels with thorough external validation ideally in prospective settings.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Yu, Haixin
|0 P:(DE-He78)6ea02cd0867abd195dedd893b73bb513
|b 1
|u dkfz
700 1 _ |a Cuk, Katarina
|0 P:(DE-He78)0a8ada1f5d2ea05fc3af10cd808bfa9a
|b 2
|u dkfz
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
|b 3
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1158/1055-9965.EPI-18-0378
|g p. cebp.0378.2018 -
|0 PERI:(DE-600)2036781-8
|n 3
|p 496-505
|t Cancer epidemiology, biomarkers & prevention
|v 28
|y 2019
|x 1538-7755
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141812
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e2927c4f5c050e0ad98ebb65eebe0d56
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6ea02cd0867abd195dedd893b73bb513
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)0a8ada1f5d2ea05fc3af10cd808bfa9a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
920 1 _ |0 I:(DE-He78)L101-20160331
|k L101
|l DKTK Heidelberg
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)L101-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21