001     141826
005     20240229111724.0
024 7 _ |a 10.1016/j.jnutbio.2018.03.027
|2 doi
024 7 _ |a pmid:29751292
|2 pmid
024 7 _ |a 0955-2863
|2 ISSN
024 7 _ |a 1873-4847
|2 ISSN
024 7 _ |a altmetric:35874051
|2 altmetric
037 _ _ |a DKFZ-2018-02094
041 _ _ |a eng
082 _ _ |a 640
100 1 _ |a Maida, Adriano
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance.
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550485540_680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent studies have demonstrated that dietary protein dilution (PD) can promote metabolic inefficiency and improve glucose metabolism. However, whether PD can promote other aspects of metabolic health, such as improve systemic lipid metabolism, and mechanisms therein remains unknown. Mouse models of obesity, such as high-fat-diet-fed C57Bl/6 N mice, and New Zealand Obese mice were fed normal (i.e., 20%P) and protein-dilute (i.e., 5%EP) diets. FGF21-/- and Cd36-/- and corresponding littermate +/+ controls were also studied to examine gene-diet interactions. Here, we show that chronic PD retards the development of hypertrigylceridemia and fatty liver in obesity and that this relies on the induction of the hepatokine fibroblast growth factor 21 (FGF21). Furthermore, PD greatly enhances systemic lipid homeostasis, the mechanisms by which include FGF21-stimulated, and cluster of differentiation 36 (CD36) mediated, fatty acid clearance by oxidative tissues, such as heart and brown adipose tissue. Taken together, our preclinical studies demonstrate a novel nutritional strategy, as well as highlight a role for FGF21-stimulated systemic lipid metabolism, in combating obesity-related dyslipidemia.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Zota, Annika
|0 P:(DE-He78)8c977a775571632d77582082ed8ee014
|b 1
|u dkfz
700 1 _ |a Vegiopoulos, Alexandros
|0 P:(DE-He78)4870f7888cc3a0e026e08d4188a9fd48
|b 2
|u dkfz
700 1 _ |a Appak-Baskoy, Sila
|0 P:(DE-He78)ac5b93418fe9d72f17cb5e424ea778b8
|b 3
|u dkfz
700 1 _ |a Augustin, Hellmut
|0 P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b
|b 4
|u dkfz
700 1 _ |a Heikenwalder, Mathias
|0 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
|b 5
|u dkfz
700 1 _ |a Herzig, Stephan
|0 P:(DE-He78)e527f794b23172e769c8904180546f57
|b 6
|u dkfz
700 1 _ |a Rose, Adam John
|0 P:(DE-He78)fcdc7b4207660a1372d0cd5491ad856e
|b 7
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.jnutbio.2018.03.027
|g Vol. 57, p. 189 - 196
|0 PERI:(DE-600)1483155-7
|p 189 - 196
|t The journal of nutritional biochemistry
|v 57
|y 2018
|x 0955-2863
909 C O |p VDB
|o oai:inrepo02.dkfz.de:141826
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8c977a775571632d77582082ed8ee014
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4870f7888cc3a0e026e08d4188a9fd48
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)ac5b93418fe9d72f17cb5e424ea778b8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)2e92d0ae281932fc7347d819fec36b0b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)66ed2d4ec9bc11d29b87ac006adf85e5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)e527f794b23172e769c8904180546f57
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)fcdc7b4207660a1372d0cd5491ad856e
913 1 _ |a DE-HGF
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|2 G:(DE-HGF)POF3-300
|v Metabolic Dysfunction as Risk Factor
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUTR BIOCHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-He78)A170-20160331
|k A170
|l Molekulare Stoffwechselkontrolle
|x 0
920 1 _ |0 I:(DE-He78)A171-20160331
|k A171
|l Metabolismus und Stammzellplastizität
|x 1
920 1 _ |0 I:(DE-He78)A190-20160331
|k A190
|l Vaskuläre Onkologie und Metastasierung
|x 2
920 1 _ |0 I:(DE-He78)F180-20160331
|k F180
|l Chronische Entzündung und Krebs
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A170-20160331
980 _ _ |a I:(DE-He78)A171-20160331
980 _ _ |a I:(DE-He78)A190-20160331
980 _ _ |a I:(DE-He78)F180-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21