000141833 001__ 141833
000141833 005__ 20240229105132.0
000141833 0247_ $$2doi$$a10.3389/fonc.2018.00035
000141833 0247_ $$2pmid$$apmid:29556480
000141833 0247_ $$2pmc$$apmc:PMC5844945
000141833 0247_ $$2altmetric$$aaltmetric:33955215
000141833 037__ $$aDKFZ-2018-02101
000141833 041__ $$aeng
000141833 082__ $$a610
000141833 1001_ $$0P:(DE-He78)ee06f8e4345f9f83ac70f0bce435f58a$$aGabrys, Hubert$$b0$$eFirst author$$udkfz
000141833 245__ $$aDesign and Selection of Machine Learning Methods Using Radiomics and Dosiomics for Normal Tissue Complication Probability Modeling of Xerostomia.
000141833 260__ $$aLausanne$$bFrontiers Media$$c2018
000141833 3367_ $$2DRIVER$$aarticle
000141833 3367_ $$2DataCite$$aOutput Types/Journal article
000141833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544098634_5442
000141833 3367_ $$2BibTeX$$aARTICLE
000141833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141833 3367_ $$00$$2EndNote$$aJournal Article
000141833 520__ $$aThe purpose of this study is to investigate whether machine learning with dosiomic, radiomic, and demographic features allows for xerostomia risk assessment more precise than normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands.A cohort of 153 head-and-neck cancer patients was used to model xerostomia at 0-6 months (early), 6-15 months (late), 15-24 months (long-term), and at any time (a longitudinal model) after radiotherapy. Predictive power of the features was evaluated by the area under the receiver operating characteristic curve (AUC) of univariate logistic regression models. The multivariate NTCP models were tuned and tested with single and nested cross-validation, respectively. We compared predictive performance of seven classification algorithms, six feature selection methods, and ten data cleaning/class balancing techniques using the Friedman test and the Nemenyi post hoc analysis.NTCP models based on the parotid mean dose failed to predict xerostomia (AUCs < 0.60). The most informative predictors were found for late and long-term xerostomia. Late xerostomia correlated with the contralateral dose gradient in the anterior-posterior (AUC = 0.72) and the right-left (AUC = 0.68) direction, whereas long-term xerostomia was associated with parotid volumes (AUCs > 0.85), dose gradients in the right-left (AUCs > 0.78), and the anterior-posterior (AUCs > 0.72) direction. Multivariate models of long-term xerostomia were typically based on the parotid volume, the parotid eccentricity, and the dose-volume histogram (DVH) spread with the generalization AUCs ranging from 0.74 to 0.88. On average, support vector machines and extra-trees were the top performing classifiers, whereas the algorithms based on logistic regression were the best choice for feature selection. We found no advantage in using data cleaning or class balancing methods.We demonstrated that incorporation of organ- and dose-shape descriptors is beneficial for xerostomia prediction in highly conformal radiotherapy treatments. Due to strong reliance on patient-specific, dose-independent factors, our results underscore the need for development of personalized data-driven risk profiles for NTCP models of xerostomia. The facilitated machine learning pipeline is described in detail and can serve as a valuable reference for future work in radiomic and dosiomic NTCP modeling.
000141833 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141833 588__ $$aDataset connected to CrossRef, PubMed,
000141833 7001_ $$aBuettner, Florian$$b1
000141833 7001_ $$0P:(DE-He78)75d45845a04db67c5a88db1086046ef1$$aSterzing, Florian$$b2$$udkfz
000141833 7001_ $$0P:(DE-He78)9e8fb0cffee71172acb6ac45c40bade0$$aHauswald, Henrik$$b3$$udkfz
000141833 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b4$$eLast author$$udkfz
000141833 773__ $$0PERI:(DE-600)2649216-7$$a10.3389/fonc.2018.00035$$gVol. 8, p. 35$$p35$$tFrontiers in oncology$$v8$$x2234-943X$$y2018
000141833 909CO $$ooai:inrepo02.dkfz.de:141833$$pVDB
000141833 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ee06f8e4345f9f83ac70f0bce435f58a$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000141833 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)75d45845a04db67c5a88db1086046ef1$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000141833 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9e8fb0cffee71172acb6ac45c40bade0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000141833 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141833 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141833 9141_ $$y2018
000141833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT ONCOL : 2017
000141833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141833 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000141833 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000141833 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000141833 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000141833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000141833 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000141833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141833 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141833 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000141833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141833 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lMedizinische Physik in der Strahlentherapie$$x0
000141833 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lKKE Strahlentherapie$$x1
000141833 980__ $$ajournal
000141833 980__ $$aVDB
000141833 980__ $$aI:(DE-He78)E040-20160331
000141833 980__ $$aI:(DE-He78)E050-20160331
000141833 980__ $$aUNRESTRICTED