001     141873
005     20240229105134.0
024 7 _ |a 10.1158/1078-0432.CCR-18-0848
|2 doi
024 7 _ |a pmid:30042208
|2 pmid
024 7 _ |a 1078-0432
|2 ISSN
024 7 _ |a 1557-3265
|2 ISSN
024 7 _ |a altmetric:45518066
|2 altmetric
037 _ _ |a DKFZ-2018-02130
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Jiang, Yuming
|b 0
245 _ _ |a Immunomarker Support Vector Machine Classifier for Prediction of Gastric Cancer Survival and Adjuvant Chemotherapeutic Benefit.
260 _ _ |a Philadelphia, Pa. [u.a.]
|c 2018
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544431122_1884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose: Current tumor-node-metastasis (TNM) staging system cannot provide adequate information for prediction of prognosis and chemotherapeutic benefits. We constructed a classifier to predict prognosis and identify a subset of patients who can benefit from adjuvant chemotherapy.Experimental Design: We detected expression of 15 immunohistochemistry (IHC) features in tumors from 251 gastric cancer (GC) patients and evaluated the association of their expression level with overall survival (OS) and disease-free survival (DFS). Then, integrating multiple clinicopathologic features and IHC features, we used support vector machine (SVM)-based methods to develop a prognostic classifier (GC-SVM classifier) with features. Further validation of the GC-SVM classifier was performed in two validation cohorts of 535 patients.Results: The GC-SVM classifier integrated patient sex, carcinoembryonic antigen, lymph node metastasis, and the protein expression level of eight features, including CD3invasive margin (IM), CD3center of tumor (CT), CD8IM, CD45ROCT, CD57IM, CD66bIM, CD68CT, and CD34. Significant differences were found between the high- and low-GC-SVM patients in 5-year OS and DFS in training and validation cohorts. Multivariate analysis revealed that the GC-SVM classifier was an independent prognostic factor. The classifier had higher predictive accuracy for OS and DFS than TNM stage and can complement the prognostic value of the TNM staging system. Further analysis revealed that stage II and III GC patients with high-GC-SVM were likely to benefit from adjuvant chemotherapy.Conclusions: The newly developed GC-SVM classifier was a powerful predictor of OS and DFS. Moreover, the GC-SVM classifier could predict which patients with stage II and III GC benefit from adjuvant chemotherapy. Clin Cancer Res; 24(22); 5574-84. ©2018 AACR.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Xie, Jingjing
|b 1
700 1 _ |a Han, Zhen
|b 2
700 1 _ |a Liu, Wei
|b 3
700 1 _ |a Xi, Sujuan
|b 4
700 1 _ |a Huang, Lei
|0 P:(DE-He78)448ff49e51672d79b4747339ac15c898
|b 5
|u dkfz
700 1 _ |a Huang, Weicai
|b 6
700 1 _ |a Lin, Tian
|b 7
700 1 _ |a Zhao, Liying
|b 8
700 1 _ |a Hu, Yanfeng
|b 9
700 1 _ |a Yu, Jiang
|b 10
700 1 _ |a Zhang, Qi
|b 11
700 1 _ |a Li, Tuanjie
|b 12
700 1 _ |a Cai, Shirong
|b 13
700 1 _ |a Li, Guoxin
|b 14
773 _ _ |a 10.1158/1078-0432.CCR-18-0848
|g Vol. 24, no. 22, p. 5574 - 5584
|0 PERI:(DE-600)2036787-9
|n 22
|p 5574 - 5584
|t Clinical cancer research
|v 24
|y 2018
|x 1557-3265
909 C O |o oai:inrepo02.dkfz.de:141873
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)448ff49e51672d79b4747339ac15c898
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|2 G:(DE-HGF)POF3-300
|v Cancer risk factors and prevention
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CLIN CANCER RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b CLIN CANCER RES : 2017
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l Klinische Epidemiologie und Alternsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21