000141875 001__ 141875
000141875 005__ 20240229105134.0
000141875 0247_ $$2doi$$a10.1088/1361-6560/aae74d
000141875 0247_ $$2pmid$$apmid:30465542
000141875 0247_ $$2ISSN$$a0031-9155
000141875 0247_ $$2ISSN$$a1361-6560
000141875 0247_ $$2altmetric$$aaltmetric:51561657
000141875 037__ $$aDKFZ-2018-02132
000141875 041__ $$aeng
000141875 082__ $$a530
000141875 1001_ $$aMenten, Martin J$$b0
000141875 245__ $$aThe impact of 2D cine MR imaging parameters on automated tumor and organ localization for MR-guided real-time adaptive radiotherapy.
000141875 260__ $$aBristol$$bIOP Publ.$$c2018
000141875 3367_ $$2DRIVER$$aarticle
000141875 3367_ $$2DataCite$$aOutput Types/Journal article
000141875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544431338_17974
000141875 3367_ $$2BibTeX$$aARTICLE
000141875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000141875 3367_ $$00$$2EndNote$$aJournal Article
000141875 520__ $$a2D cine MR imaging may be utilized to monitor rapidly moving tumors and organs-at-risk for real-time adaptive radiotherapy. This study systematically investigates the impact of geometric imaging parameters on the ability of 2D cine MR imaging to guide template-matching-driven autocontouring of lung tumors and abdominal organs. Abdominal 4D MR images were acquired of six healthy volunteers and thoracic 4D MR images were obtained of eight lung cancer patients. At each breathing phase of the images, the left kidney and gallbladder or lung tumor, respectively, were outlined as volumes of interest. These images and contours were used to create artificial 2D cine MR images, while simultaneously serving as 3D ground truth. We explored the impact of five different imaging parameters (pixel size, slice thickness, imaging plane orientation, number and relative alignment of images as well as strategies to create training images). For each possible combination of imaging parameters, we generated artificial 2D cine MR images as training and test images. A template-matching algorithm used the training images to determine the tumor or organ position in the test images. Subsequently, a 3D base contour was shifted to the determined position and compared to the ground truth via centroid distance and Dice similarity coefficient. The median centroid distance between adapted and ground truth contours was 1.56 mm for the kidney, 3.81 mm for the gallbladder and 1.03 mm for the lung tumor (median Dice similarity coefficient: 0.95, 0.72 and 0.93). We observed that a decrease in image resolution led to a modest decrease in localization accuracy, especially for the small gallbladder. However, for all volumes of interest localization accuracy varied substantially more between subjects than due to the different imaging parameters. Automated tumor and organ localization using 2D cine MR imaging and template-matching-based autocontouring is robust against variation of geometric imaging parameters. Future work and optimization efforts of 2D cine MR imaging for real-time adaptive radiotherapy is needed to characterize the influence of sequence- and anatomical site-specific imaging contrast.
000141875 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000141875 588__ $$aDataset connected to CrossRef, PubMed,
000141875 7001_ $$aFast, Martin F$$b1
000141875 7001_ $$aWetscherek, Andreas$$b2
000141875 7001_ $$aRank, Christopher M$$b3
000141875 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelrieß, Marc$$b4$$udkfz
000141875 7001_ $$aCollins, David J$$b5
000141875 7001_ $$aNill, Simeon$$b6
000141875 7001_ $$aOelfke, Uwe$$b7
000141875 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aae74d$$gVol. 63, no. 23, p. 235005 -$$n23$$p235005 $$tPhysics in medicine and biology$$v63$$x1361-6560$$y2018
000141875 909CO $$ooai:inrepo02.dkfz.de:141875$$pVDB
000141875 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000141875 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000141875 9141_ $$y2018
000141875 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000141875 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000141875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000141875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000141875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000141875 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000141875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000141875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000141875 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000141875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000141875 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000141875 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000141875 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000141875 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000141875 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lMedizinische Physik in der Radiologie$$x0
000141875 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lRöntgenbildgebung und Computertomographie$$x1
000141875 980__ $$ajournal
000141875 980__ $$aVDB
000141875 980__ $$aI:(DE-He78)E020-20160331
000141875 980__ $$aI:(DE-He78)E025-20160331
000141875 980__ $$aUNRESTRICTED